| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dffun6 | ⊢ ( Fun  𝐹  ↔  ( Rel  𝐹  ∧  ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) ) | 
						
							| 2 | 1 | simplbi | ⊢ ( Fun  𝐹  →  Rel  𝐹 ) | 
						
							| 3 |  | brrelex1 | ⊢ ( ( Rel  𝐹  ∧  𝐴 𝐹 𝑦 )  →  𝐴  ∈  V ) | 
						
							| 4 | 3 | ex | ⊢ ( Rel  𝐹  →  ( 𝐴 𝐹 𝑦  →  𝐴  ∈  V ) ) | 
						
							| 5 | 2 4 | syl | ⊢ ( Fun  𝐹  →  ( 𝐴 𝐹 𝑦  →  𝐴  ∈  V ) ) | 
						
							| 6 | 5 | ancrd | ⊢ ( Fun  𝐹  →  ( 𝐴 𝐹 𝑦  →  ( 𝐴  ∈  V  ∧  𝐴 𝐹 𝑦 ) ) ) | 
						
							| 7 | 6 | alrimiv | ⊢ ( Fun  𝐹  →  ∀ 𝑦 ( 𝐴 𝐹 𝑦  →  ( 𝐴  ∈  V  ∧  𝐴 𝐹 𝑦 ) ) ) | 
						
							| 8 | 1 | simprbi | ⊢ ( Fun  𝐹  →  ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦 ) | 
						
							| 9 |  | breq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝐹 𝑦  ↔  𝐴 𝐹 𝑦 ) ) | 
						
							| 10 | 9 | mobidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃* 𝑦 𝑥 𝐹 𝑦  ↔  ∃* 𝑦 𝐴 𝐹 𝑦 ) ) | 
						
							| 11 | 10 | spcgv | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑥 ∃* 𝑦 𝑥 𝐹 𝑦  →  ∃* 𝑦 𝐴 𝐹 𝑦 ) ) | 
						
							| 12 | 8 11 | syl5com | ⊢ ( Fun  𝐹  →  ( 𝐴  ∈  V  →  ∃* 𝑦 𝐴 𝐹 𝑦 ) ) | 
						
							| 13 |  | moanimv | ⊢ ( ∃* 𝑦 ( 𝐴  ∈  V  ∧  𝐴 𝐹 𝑦 )  ↔  ( 𝐴  ∈  V  →  ∃* 𝑦 𝐴 𝐹 𝑦 ) ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( Fun  𝐹  →  ∃* 𝑦 ( 𝐴  ∈  V  ∧  𝐴 𝐹 𝑦 ) ) | 
						
							| 15 |  | moim | ⊢ ( ∀ 𝑦 ( 𝐴 𝐹 𝑦  →  ( 𝐴  ∈  V  ∧  𝐴 𝐹 𝑦 ) )  →  ( ∃* 𝑦 ( 𝐴  ∈  V  ∧  𝐴 𝐹 𝑦 )  →  ∃* 𝑦 𝐴 𝐹 𝑦 ) ) | 
						
							| 16 | 7 14 15 | sylc | ⊢ ( Fun  𝐹  →  ∃* 𝑦 𝐴 𝐹 𝑦 ) |