Metamath Proof Explorer


Theorem dfatopafv2b

Description: Equivalence of function value and ordered pair membership, analogous to fnopfvb or funopfvb . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion dfatopafv2b FdefAtABWF''''A=BABF

Proof

Step Hyp Ref Expression
1 dfatbrafv2b FdefAtABWF''''A=BAFB
2 df-br AFBABF
3 1 2 bitrdi FdefAtABWF''''A=BABF