Metamath Proof Explorer


Theorem tz6.12i-afv2

Description: Corollary of Theorem 6.12(2) of TakeutiZaring p. 27. analogous to tz6.12i . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion tz6.12i-afv2 B ran F F '''' A = B A F B

Proof

Step Hyp Ref Expression
1 eleq1 F '''' A = y F '''' A ran F y ran F
2 dfatafv2rnb F defAt A F '''' A ran F
3 dfdfat2 F defAt A A dom F ∃! y A F y
4 3 simprbi F defAt A ∃! y A F y
5 2 4 sylbir F '''' A ran F ∃! y A F y
6 tz6.12c-afv2 ∃! y A F y F '''' A = y A F y
7 5 6 syl F '''' A ran F F '''' A = y A F y
8 7 biimpcd F '''' A = y F '''' A ran F A F y
9 1 8 sylbird F '''' A = y y ran F A F y
10 9 eqcoms y = F '''' A y ran F A F y
11 eleq1 y = F '''' A y ran F F '''' A ran F
12 breq2 y = F '''' A A F y A F F '''' A
13 10 11 12 3imtr3d y = F '''' A F '''' A ran F A F F '''' A
14 13 vtocleg F '''' A ran F F '''' A ran F A F F '''' A
15 14 pm2.43i F '''' A ran F A F F '''' A
16 15 a1i F '''' A = B F '''' A ran F A F F '''' A
17 eleq1 F '''' A = B F '''' A ran F B ran F
18 breq2 F '''' A = B A F F '''' A A F B
19 16 17 18 3imtr3d F '''' A = B B ran F A F B
20 19 com12 B ran F F '''' A = B A F B