Metamath Proof Explorer


Theorem funbrfvb

Description: Equivalence of function value and binary relation. (Contributed by NM, 26-Mar-2006)

Ref Expression
Assertion funbrfvb FunFAdomFFA=BAFB

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 fnbrfvb FFndomFAdomFFA=BAFB
3 1 2 sylanb FunFAdomFFA=BAFB