Description: Lemma 2 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcringcsetcALTV.r | |- R = ( RingCatALTV ` U ) |
|
| funcringcsetcALTV.s | |- S = ( SetCat ` U ) |
||
| funcringcsetcALTV.b | |- B = ( Base ` R ) |
||
| funcringcsetcALTV.c | |- C = ( Base ` S ) |
||
| funcringcsetcALTV.u | |- ( ph -> U e. WUni ) |
||
| funcringcsetcALTV.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
||
| Assertion | funcringcsetclem2ALTV | |- ( ( ph /\ X e. B ) -> ( F ` X ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcringcsetcALTV.r | |- R = ( RingCatALTV ` U ) |
|
| 2 | funcringcsetcALTV.s | |- S = ( SetCat ` U ) |
|
| 3 | funcringcsetcALTV.b | |- B = ( Base ` R ) |
|
| 4 | funcringcsetcALTV.c | |- C = ( Base ` S ) |
|
| 5 | funcringcsetcALTV.u | |- ( ph -> U e. WUni ) |
|
| 6 | funcringcsetcALTV.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
|
| 7 | 1 2 3 4 5 6 | funcringcsetclem1ALTV | |- ( ( ph /\ X e. B ) -> ( F ` X ) = ( Base ` X ) ) |
| 8 | 1 3 5 | ringcbasbasALTV | |- ( ( ph /\ X e. B ) -> ( Base ` X ) e. U ) |
| 9 | 7 8 | eqeltrd | |- ( ( ph /\ X e. B ) -> ( F ` X ) e. U ) |