Metamath Proof Explorer


Theorem funcringcsetclem2ALTV

Description: Lemma 2 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r R = RingCatALTV U
funcringcsetcALTV.s S = SetCat U
funcringcsetcALTV.b B = Base R
funcringcsetcALTV.c C = Base S
funcringcsetcALTV.u φ U WUni
funcringcsetcALTV.f φ F = x B Base x
Assertion funcringcsetclem2ALTV φ X B F X U

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r R = RingCatALTV U
2 funcringcsetcALTV.s S = SetCat U
3 funcringcsetcALTV.b B = Base R
4 funcringcsetcALTV.c C = Base S
5 funcringcsetcALTV.u φ U WUni
6 funcringcsetcALTV.f φ F = x B Base x
7 1 2 3 4 5 6 funcringcsetclem1ALTV φ X B F X = Base X
8 1 3 5 ringcbasbasALTV φ X B Base X U
9 7 8 eqeltrd φ X B F X U