Metamath Proof Explorer


Theorem funcringcsetclem1ALTV

Description: Lemma 1 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r R = RingCatALTV U
funcringcsetcALTV.s S = SetCat U
funcringcsetcALTV.b B = Base R
funcringcsetcALTV.c C = Base S
funcringcsetcALTV.u φ U WUni
funcringcsetcALTV.f φ F = x B Base x
Assertion funcringcsetclem1ALTV φ X B F X = Base X

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r R = RingCatALTV U
2 funcringcsetcALTV.s S = SetCat U
3 funcringcsetcALTV.b B = Base R
4 funcringcsetcALTV.c C = Base S
5 funcringcsetcALTV.u φ U WUni
6 funcringcsetcALTV.f φ F = x B Base x
7 6 adantr φ X B F = x B Base x
8 fveq2 x = X Base x = Base X
9 8 adantl φ X B x = X Base x = Base X
10 simpr φ X B X B
11 fvexd φ X B Base X V
12 7 9 10 11 fvmptd φ X B F X = Base X