Step |
Hyp |
Ref |
Expression |
1 |
|
funcringcsetcALTV.r |
⊢ 𝑅 = ( RingCatALTV ‘ 𝑈 ) |
2 |
|
funcringcsetcALTV.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
3 |
|
funcringcsetcALTV.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
funcringcsetcALTV.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
5 |
|
funcringcsetcALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
6 |
|
funcringcsetcALTV.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 = 𝑋 ) → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
11 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( Base ‘ 𝑋 ) ∈ V ) |
12 |
7 9 10 11
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |