Metamath Proof Explorer


Theorem funcringcsetcALTV

Description: The "natural forgetful functor" from the category of rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 16-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r 𝑅 = ( RingCatALTV ‘ 𝑈 )
funcringcsetcALTV.s 𝑆 = ( SetCat ‘ 𝑈 )
funcringcsetcALTV.b 𝐵 = ( Base ‘ 𝑅 )
funcringcsetcALTV.c 𝐶 = ( Base ‘ 𝑆 )
funcringcsetcALTV.u ( 𝜑𝑈 ∈ WUni )
funcringcsetcALTV.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
funcringcsetcALTV.g ( 𝜑𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) )
Assertion funcringcsetcALTV ( 𝜑𝐹 ( 𝑅 Func 𝑆 ) 𝐺 )

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r 𝑅 = ( RingCatALTV ‘ 𝑈 )
2 funcringcsetcALTV.s 𝑆 = ( SetCat ‘ 𝑈 )
3 funcringcsetcALTV.b 𝐵 = ( Base ‘ 𝑅 )
4 funcringcsetcALTV.c 𝐶 = ( Base ‘ 𝑆 )
5 funcringcsetcALTV.u ( 𝜑𝑈 ∈ WUni )
6 funcringcsetcALTV.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
7 funcringcsetcALTV.g ( 𝜑𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) )
8 eqid ( Hom ‘ 𝑅 ) = ( Hom ‘ 𝑅 )
9 eqid ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 )
10 eqid ( Id ‘ 𝑅 ) = ( Id ‘ 𝑅 )
11 eqid ( Id ‘ 𝑆 ) = ( Id ‘ 𝑆 )
12 eqid ( comp ‘ 𝑅 ) = ( comp ‘ 𝑅 )
13 eqid ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 )
14 1 ringccatALTV ( 𝑈 ∈ WUni → 𝑅 ∈ Cat )
15 5 14 syl ( 𝜑𝑅 ∈ Cat )
16 2 setccat ( 𝑈 ∈ WUni → 𝑆 ∈ Cat )
17 5 16 syl ( 𝜑𝑆 ∈ Cat )
18 1 2 3 4 5 6 funcringcsetclem3ALTV ( 𝜑𝐹 : 𝐵𝐶 )
19 1 2 3 4 5 6 7 funcringcsetclem4ALTV ( 𝜑𝐺 Fn ( 𝐵 × 𝐵 ) )
20 1 2 3 4 5 6 7 funcringcsetclem8ALTV ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝑎 𝐺 𝑏 ) : ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ⟶ ( ( 𝐹𝑎 ) ( Hom ‘ 𝑆 ) ( 𝐹𝑏 ) ) )
21 1 2 3 4 5 6 7 funcringcsetclem7ALTV ( ( 𝜑𝑎𝐵 ) → ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝑅 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( 𝐹𝑎 ) ) )
22 1 2 3 4 5 6 7 funcringcsetclem9ALTV ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵𝑐𝐵 ) ∧ ( ∈ ( 𝑎 ( Hom ‘ 𝑅 ) 𝑏 ) ∧ 𝑘 ∈ ( 𝑏 ( Hom ‘ 𝑅 ) 𝑐 ) ) ) → ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑘 ( ⟨ 𝑎 , 𝑏 ⟩ ( comp ‘ 𝑅 ) 𝑐 ) ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑘 ) ( ⟨ ( 𝐹𝑎 ) , ( 𝐹𝑏 ) ⟩ ( comp ‘ 𝑆 ) ( 𝐹𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ ) ) )
23 3 4 8 9 10 11 12 13 15 17 18 19 20 21 22 isfuncd ( 𝜑𝐹 ( 𝑅 Func 𝑆 ) 𝐺 )