| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcringcsetcALTV.r |
⊢ 𝑅 = ( RingCatALTV ‘ 𝑈 ) |
| 2 |
|
funcringcsetcALTV.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
| 3 |
|
funcringcsetcALTV.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
funcringcsetcALTV.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
| 5 |
|
funcringcsetcALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 6 |
|
funcringcsetcALTV.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
| 7 |
|
funcringcsetcALTV.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) ) |
| 8 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑈 ∈ WUni ) |
| 9 |
|
eqid |
⊢ ( Hom ‘ 𝑅 ) = ( Hom ‘ 𝑅 ) |
| 10 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
| 11 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
| 12 |
1 3 8 9 10 11
|
ringchomALTV |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
| 13 |
12
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) ↔ 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ) ) |
| 14 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
| 15 |
1 3 8 9 11 14
|
ringchomALTV |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 ( Hom ‘ 𝑅 ) 𝑍 ) = ( 𝑌 RingHom 𝑍 ) ) |
| 16 |
15
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝑅 ) 𝑍 ) ↔ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) |
| 17 |
13 16
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝑅 ) 𝑍 ) ) ↔ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) ) |
| 18 |
|
rhmco |
⊢ ( ( 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ∧ 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ) → ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑋 RingHom 𝑍 ) ) |
| 19 |
18
|
ancoms |
⊢ ( ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) → ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑋 RingHom 𝑍 ) ) |
| 20 |
19
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑋 RingHom 𝑍 ) ) |
| 21 |
|
fvresi |
⊢ ( ( 𝐾 ∘ 𝐻 ) ∈ ( 𝑋 RingHom 𝑍 ) → ( ( I ↾ ( 𝑋 RingHom 𝑍 ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 22 |
20 21
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( ( I ↾ ( 𝑋 RingHom 𝑍 ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 23 |
1 2 3 4 5 6 7
|
funcringcsetclem5ALTV |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( 𝑋 RingHom 𝑍 ) ) ) |
| 24 |
23
|
3adantr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( 𝑋 RingHom 𝑍 ) ) ) |
| 25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( 𝑋 𝐺 𝑍 ) = ( I ↾ ( 𝑋 RingHom 𝑍 ) ) ) |
| 26 |
8
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → 𝑈 ∈ WUni ) |
| 27 |
|
eqid |
⊢ ( comp ‘ 𝑅 ) = ( comp ‘ 𝑅 ) |
| 28 |
10
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 29 |
11
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 30 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → 𝑍 ∈ 𝐵 ) |
| 31 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ) |
| 32 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) |
| 33 |
1 3 26 27 28 29 30 31 32
|
ringccoALTV |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐻 ) = ( 𝐾 ∘ 𝐻 ) ) |
| 34 |
25 33
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐻 ) ) = ( ( I ↾ ( 𝑋 RingHom 𝑍 ) ) ‘ ( 𝐾 ∘ 𝐻 ) ) ) |
| 35 |
|
eqid |
⊢ ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 ) |
| 36 |
1 2 3 4 5 6
|
funcringcsetclem2ALTV |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 37 |
36
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 38 |
37
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 39 |
1 2 3 4 5 6
|
funcringcsetclem2ALTV |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 40 |
39
|
3ad2antr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 41 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( 𝐹 ‘ 𝑌 ) ∈ 𝑈 ) |
| 42 |
1 2 3 4 5 6
|
funcringcsetclem2ALTV |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 43 |
42
|
3ad2antr3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( 𝐹 ‘ 𝑍 ) ∈ 𝑈 ) |
| 45 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
| 46 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 47 |
45 46
|
rhmf |
⊢ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) → 𝐻 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 48 |
47
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → 𝐻 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 49 |
1 2 3 4 5 6
|
funcringcsetclem1ALTV |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
| 50 |
49
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
| 51 |
1 2 3 4 5 6
|
funcringcsetclem1ALTV |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 52 |
51
|
3ad2antr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
| 53 |
50 52
|
feq23d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐻 : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ↔ 𝐻 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( 𝐻 : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ↔ 𝐻 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) |
| 55 |
48 54
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → 𝐻 : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ) |
| 56 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → 𝜑 ) |
| 57 |
|
3simpa |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 58 |
57
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 59 |
1 2 3 4 5 6 7
|
funcringcsetclem6ALTV |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |
| 60 |
56 58 31 59
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 ) |
| 61 |
60
|
feq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ↔ 𝐻 : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ) ) |
| 62 |
55 61
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) : ( 𝐹 ‘ 𝑋 ) ⟶ ( 𝐹 ‘ 𝑌 ) ) |
| 63 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
| 64 |
46 63
|
rhmf |
⊢ ( 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) → 𝐾 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) |
| 65 |
64
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → 𝐾 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) |
| 66 |
1 2 3 4 5 6
|
funcringcsetclem1ALTV |
⊢ ( ( 𝜑 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑍 ) = ( Base ‘ 𝑍 ) ) |
| 67 |
66
|
3ad2antr3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑍 ) = ( Base ‘ 𝑍 ) ) |
| 68 |
52 67
|
feq23d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝐾 : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ↔ 𝐾 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) ) |
| 69 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( 𝐾 : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ↔ 𝐾 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑍 ) ) ) |
| 70 |
65 69
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → 𝐾 : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ) |
| 71 |
|
3simpc |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) |
| 72 |
71
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) |
| 73 |
1 2 3 4 5 6 7
|
funcringcsetclem6ALTV |
⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) = 𝐾 ) |
| 74 |
56 72 32 73
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) = 𝐾 ) |
| 75 |
74
|
feq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ↔ 𝐾 : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ) ) |
| 76 |
70 75
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) : ( 𝐹 ‘ 𝑌 ) ⟶ ( 𝐹 ‘ 𝑍 ) ) |
| 77 |
2 26 35 38 41 44 62 76
|
setcco |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ∘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |
| 78 |
74 60
|
coeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ∘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 79 |
77 78
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) = ( 𝐾 ∘ 𝐻 ) ) |
| 80 |
22 34 79
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |
| 81 |
80
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 RingHom 𝑍 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) ) |
| 82 |
17 81
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝑅 ) 𝑍 ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) ) |
| 83 |
82
|
3impia |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) ∧ 𝐾 ∈ ( 𝑌 ( Hom ‘ 𝑅 ) 𝑍 ) ) ) → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐾 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐻 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐾 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) ) ) |