Step |
Hyp |
Ref |
Expression |
1 |
|
funcringcsetcALTV.r |
⊢ 𝑅 = ( RingCatALTV ‘ 𝑈 ) |
2 |
|
funcringcsetcALTV.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
3 |
|
funcringcsetcALTV.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
funcringcsetcALTV.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
5 |
|
funcringcsetcALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
6 |
|
funcringcsetcALTV.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
7 |
|
funcringcsetcALTV.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) ) |
9 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 RingHom 𝑦 ) = ( 𝑋 RingHom 𝑌 ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑥 RingHom 𝑦 ) = ( 𝑋 RingHom 𝑌 ) ) |
11 |
10
|
reseq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( I ↾ ( 𝑥 RingHom 𝑦 ) ) = ( I ↾ ( 𝑋 RingHom 𝑌 ) ) ) |
12 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
13 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
14 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 RingHom 𝑌 ) ∈ V ) |
15 |
14
|
resiexd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( I ↾ ( 𝑋 RingHom 𝑌 ) ) ∈ V ) |
16 |
8 11 12 13 15
|
ovmpod |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑋 RingHom 𝑌 ) ) ) |