Metamath Proof Explorer


Theorem funcringcsetclem6ALTV

Description: Lemma 6 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r 𝑅 = ( RingCatALTV ‘ 𝑈 )
funcringcsetcALTV.s 𝑆 = ( SetCat ‘ 𝑈 )
funcringcsetcALTV.b 𝐵 = ( Base ‘ 𝑅 )
funcringcsetcALTV.c 𝐶 = ( Base ‘ 𝑆 )
funcringcsetcALTV.u ( 𝜑𝑈 ∈ WUni )
funcringcsetcALTV.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
funcringcsetcALTV.g ( 𝜑𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) )
Assertion funcringcsetclem6ALTV ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 )

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r 𝑅 = ( RingCatALTV ‘ 𝑈 )
2 funcringcsetcALTV.s 𝑆 = ( SetCat ‘ 𝑈 )
3 funcringcsetcALTV.b 𝐵 = ( Base ‘ 𝑅 )
4 funcringcsetcALTV.c 𝐶 = ( Base ‘ 𝑆 )
5 funcringcsetcALTV.u ( 𝜑𝑈 ∈ WUni )
6 funcringcsetcALTV.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
7 funcringcsetcALTV.g ( 𝜑𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) )
8 1 2 3 4 5 6 7 funcringcsetclem5ALTV ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑋 RingHom 𝑌 ) ) )
9 8 3adant3 ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑋 RingHom 𝑌 ) ) )
10 9 fveq1d ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = ( ( I ↾ ( 𝑋 RingHom 𝑌 ) ) ‘ 𝐻 ) )
11 fvresi ( 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) → ( ( I ↾ ( 𝑋 RingHom 𝑌 ) ) ‘ 𝐻 ) = 𝐻 )
12 11 3ad2ant3 ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ) → ( ( I ↾ ( 𝑋 RingHom 𝑌 ) ) ‘ 𝐻 ) = 𝐻 )
13 10 12 eqtrd ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝐻 ∈ ( 𝑋 RingHom 𝑌 ) ) → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐻 ) = 𝐻 )