Step |
Hyp |
Ref |
Expression |
1 |
|
funcringcsetcALTV.r |
⊢ 𝑅 = ( RingCatALTV ‘ 𝑈 ) |
2 |
|
funcringcsetcALTV.s |
⊢ 𝑆 = ( SetCat ‘ 𝑈 ) |
3 |
|
funcringcsetcALTV.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
funcringcsetcALTV.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
5 |
|
funcringcsetcALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
6 |
|
funcringcsetcALTV.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( Base ‘ 𝑥 ) ) ) |
7 |
|
funcringcsetcALTV.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) ) |
8 |
1 2 3 4 5 6 7
|
funcringcsetclem5ALTV |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑋 𝐺 𝑋 ) = ( I ↾ ( 𝑋 RingHom 𝑋 ) ) ) |
9 |
8
|
anabsan2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 𝐺 𝑋 ) = ( I ↾ ( 𝑋 RingHom 𝑋 ) ) ) |
10 |
|
eqid |
⊢ ( Id ‘ 𝑅 ) = ( Id ‘ 𝑅 ) |
11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝑈 ∈ WUni ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
14 |
1 3 10 11 12 13
|
ringcidALTV |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( Id ‘ 𝑅 ) ‘ 𝑋 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
15 |
9 14
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ( I ↾ ( 𝑋 RingHom 𝑋 ) ) ‘ ( I ↾ ( Base ‘ 𝑋 ) ) ) ) |
16 |
1 3 5
|
ringcbasALTV |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) |
17 |
16
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ ( 𝑈 ∩ Ring ) ) ) |
18 |
|
elin |
⊢ ( 𝑋 ∈ ( 𝑈 ∩ Ring ) ↔ ( 𝑋 ∈ 𝑈 ∧ 𝑋 ∈ Ring ) ) |
19 |
18
|
simprbi |
⊢ ( 𝑋 ∈ ( 𝑈 ∩ Ring ) → 𝑋 ∈ Ring ) |
20 |
17 19
|
syl6bi |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 → 𝑋 ∈ Ring ) ) |
21 |
20
|
imp |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ Ring ) |
22 |
13
|
idrhm |
⊢ ( 𝑋 ∈ Ring → ( I ↾ ( Base ‘ 𝑋 ) ) ∈ ( 𝑋 RingHom 𝑋 ) ) |
23 |
|
fvresi |
⊢ ( ( I ↾ ( Base ‘ 𝑋 ) ) ∈ ( 𝑋 RingHom 𝑋 ) → ( ( I ↾ ( 𝑋 RingHom 𝑋 ) ) ‘ ( I ↾ ( Base ‘ 𝑋 ) ) ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
24 |
21 22 23
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( I ↾ ( 𝑋 RingHom 𝑋 ) ) ‘ ( I ↾ ( Base ‘ 𝑋 ) ) ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
25 |
1 2 3 4 5 6
|
funcringcsetclem1ALTV |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) = ( Base ‘ 𝑋 ) ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( Id ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝑋 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( Base ‘ 𝑋 ) ) ) |
27 |
|
eqid |
⊢ ( Id ‘ 𝑆 ) = ( Id ‘ 𝑆 ) |
28 |
1 3 5
|
ringcbasbasALTV |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( Base ‘ 𝑋 ) ∈ 𝑈 ) |
29 |
2 27 11 28
|
setcid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( Id ‘ 𝑆 ) ‘ ( Base ‘ 𝑋 ) ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
30 |
26 29
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( I ↾ ( Base ‘ 𝑋 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
31 |
15 24 30
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |