Metamath Proof Explorer


Theorem funcringcsetclem8ALTV

Description: Lemma 8 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r 𝑅 = ( RingCatALTV ‘ 𝑈 )
funcringcsetcALTV.s 𝑆 = ( SetCat ‘ 𝑈 )
funcringcsetcALTV.b 𝐵 = ( Base ‘ 𝑅 )
funcringcsetcALTV.c 𝐶 = ( Base ‘ 𝑆 )
funcringcsetcALTV.u ( 𝜑𝑈 ∈ WUni )
funcringcsetcALTV.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
funcringcsetcALTV.g ( 𝜑𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) )
Assertion funcringcsetclem8ALTV ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) ⟶ ( ( 𝐹𝑋 ) ( Hom ‘ 𝑆 ) ( 𝐹𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r 𝑅 = ( RingCatALTV ‘ 𝑈 )
2 funcringcsetcALTV.s 𝑆 = ( SetCat ‘ 𝑈 )
3 funcringcsetcALTV.b 𝐵 = ( Base ‘ 𝑅 )
4 funcringcsetcALTV.c 𝐶 = ( Base ‘ 𝑆 )
5 funcringcsetcALTV.u ( 𝜑𝑈 ∈ WUni )
6 funcringcsetcALTV.f ( 𝜑𝐹 = ( 𝑥𝐵 ↦ ( Base ‘ 𝑥 ) ) )
7 funcringcsetcALTV.g ( 𝜑𝐺 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( I ↾ ( 𝑥 RingHom 𝑦 ) ) ) )
8 f1oi ( I ↾ ( 𝑋 RingHom 𝑌 ) ) : ( 𝑋 RingHom 𝑌 ) –1-1-onto→ ( 𝑋 RingHom 𝑌 )
9 f1of ( ( I ↾ ( 𝑋 RingHom 𝑌 ) ) : ( 𝑋 RingHom 𝑌 ) –1-1-onto→ ( 𝑋 RingHom 𝑌 ) → ( I ↾ ( 𝑋 RingHom 𝑌 ) ) : ( 𝑋 RingHom 𝑌 ) ⟶ ( 𝑋 RingHom 𝑌 ) )
10 8 9 mp1i ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( I ↾ ( 𝑋 RingHom 𝑌 ) ) : ( 𝑋 RingHom 𝑌 ) ⟶ ( 𝑋 RingHom 𝑌 ) )
11 eqid ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 )
12 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
13 11 12 rhmf ( 𝑓 ∈ ( 𝑋 RingHom 𝑌 ) → 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) )
14 fvex ( Base ‘ 𝑌 ) ∈ V
15 fvex ( Base ‘ 𝑋 ) ∈ V
16 14 15 pm3.2i ( ( Base ‘ 𝑌 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V )
17 elmapg ( ( ( Base ‘ 𝑌 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) → ( 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ↔ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) )
18 17 bicomd ( ( ( Base ‘ 𝑌 ) ∈ V ∧ ( Base ‘ 𝑋 ) ∈ V ) → ( 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ↔ 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) )
19 16 18 mp1i ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ↔ 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) ) )
20 19 biimpa ( ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) ∧ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) → 𝑓 ∈ ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) )
21 simpr ( ( 𝑋𝐵𝑌𝐵 ) → 𝑌𝐵 )
22 1 2 3 4 5 6 funcringcsetclem1ALTV ( ( 𝜑𝑌𝐵 ) → ( 𝐹𝑌 ) = ( Base ‘ 𝑌 ) )
23 21 22 sylan2 ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝐹𝑌 ) = ( Base ‘ 𝑌 ) )
24 simpl ( ( 𝑋𝐵𝑌𝐵 ) → 𝑋𝐵 )
25 1 2 3 4 5 6 funcringcsetclem1ALTV ( ( 𝜑𝑋𝐵 ) → ( 𝐹𝑋 ) = ( Base ‘ 𝑋 ) )
26 24 25 sylan2 ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝐹𝑋 ) = ( Base ‘ 𝑋 ) )
27 23 26 oveq12d ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( 𝐹𝑌 ) ↑m ( 𝐹𝑋 ) ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) )
28 27 adantr ( ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) ∧ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) → ( ( 𝐹𝑌 ) ↑m ( 𝐹𝑋 ) ) = ( ( Base ‘ 𝑌 ) ↑m ( Base ‘ 𝑋 ) ) )
29 20 28 eleqtrrd ( ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) ∧ 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) → 𝑓 ∈ ( ( 𝐹𝑌 ) ↑m ( 𝐹𝑋 ) ) )
30 29 ex ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑓 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) → 𝑓 ∈ ( ( 𝐹𝑌 ) ↑m ( 𝐹𝑋 ) ) ) )
31 13 30 syl5 ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑓 ∈ ( 𝑋 RingHom 𝑌 ) → 𝑓 ∈ ( ( 𝐹𝑌 ) ↑m ( 𝐹𝑋 ) ) ) )
32 31 ssrdv ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 RingHom 𝑌 ) ⊆ ( ( 𝐹𝑌 ) ↑m ( 𝐹𝑋 ) ) )
33 10 32 fssd ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( I ↾ ( 𝑋 RingHom 𝑌 ) ) : ( 𝑋 RingHom 𝑌 ) ⟶ ( ( 𝐹𝑌 ) ↑m ( 𝐹𝑋 ) ) )
34 1 2 3 4 5 6 7 funcringcsetclem5ALTV ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) = ( I ↾ ( 𝑋 RingHom 𝑌 ) ) )
35 5 adantr ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝑈 ∈ WUni )
36 eqid ( Hom ‘ 𝑅 ) = ( Hom ‘ 𝑅 )
37 24 adantl ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝑋𝐵 )
38 21 adantl ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝑌𝐵 )
39 1 3 35 36 37 38 ringchomALTV ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) = ( 𝑋 RingHom 𝑌 ) )
40 eqid ( Hom ‘ 𝑆 ) = ( Hom ‘ 𝑆 )
41 1 2 3 4 5 6 funcringcsetclem2ALTV ( ( 𝜑𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ 𝑈 )
42 24 41 sylan2 ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝐹𝑋 ) ∈ 𝑈 )
43 1 2 3 4 5 6 funcringcsetclem2ALTV ( ( 𝜑𝑌𝐵 ) → ( 𝐹𝑌 ) ∈ 𝑈 )
44 21 43 sylan2 ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝐹𝑌 ) ∈ 𝑈 )
45 2 35 40 42 44 setchom ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( 𝐹𝑋 ) ( Hom ‘ 𝑆 ) ( 𝐹𝑌 ) ) = ( ( 𝐹𝑌 ) ↑m ( 𝐹𝑋 ) ) )
46 34 39 45 feq123d ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) ⟶ ( ( 𝐹𝑋 ) ( Hom ‘ 𝑆 ) ( 𝐹𝑌 ) ) ↔ ( I ↾ ( 𝑋 RingHom 𝑌 ) ) : ( 𝑋 RingHom 𝑌 ) ⟶ ( ( 𝐹𝑌 ) ↑m ( 𝐹𝑋 ) ) ) )
47 33 46 mpbird ( ( 𝜑 ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) ⟶ ( ( 𝐹𝑋 ) ( Hom ‘ 𝑆 ) ( 𝐹𝑌 ) ) )