Step |
Hyp |
Ref |
Expression |
1 |
|
funcringcsetcALTV.r |
|- R = ( RingCatALTV ` U ) |
2 |
|
funcringcsetcALTV.s |
|- S = ( SetCat ` U ) |
3 |
|
funcringcsetcALTV.b |
|- B = ( Base ` R ) |
4 |
|
funcringcsetcALTV.c |
|- C = ( Base ` S ) |
5 |
|
funcringcsetcALTV.u |
|- ( ph -> U e. WUni ) |
6 |
|
funcringcsetcALTV.f |
|- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
7 |
|
funcringcsetcALTV.g |
|- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( x RingHom y ) ) ) ) |
8 |
7
|
adantr |
|- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> G = ( x e. B , y e. B |-> ( _I |` ( x RingHom y ) ) ) ) |
9 |
|
oveq12 |
|- ( ( x = X /\ y = Y ) -> ( x RingHom y ) = ( X RingHom Y ) ) |
10 |
9
|
adantl |
|- ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ ( x = X /\ y = Y ) ) -> ( x RingHom y ) = ( X RingHom Y ) ) |
11 |
10
|
reseq2d |
|- ( ( ( ph /\ ( X e. B /\ Y e. B ) ) /\ ( x = X /\ y = Y ) ) -> ( _I |` ( x RingHom y ) ) = ( _I |` ( X RingHom Y ) ) ) |
12 |
|
simprl |
|- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> X e. B ) |
13 |
|
simprr |
|- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> Y e. B ) |
14 |
|
ovexd |
|- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X RingHom Y ) e. _V ) |
15 |
14
|
resiexd |
|- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( _I |` ( X RingHom Y ) ) e. _V ) |
16 |
8 11 12 13 15
|
ovmpod |
|- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X G Y ) = ( _I |` ( X RingHom Y ) ) ) |