Metamath Proof Explorer


Theorem funcringcsetclem9ALTV

Description: Lemma 9 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r R=RingCatALTVU
funcringcsetcALTV.s S=SetCatU
funcringcsetcALTV.b B=BaseR
funcringcsetcALTV.c C=BaseS
funcringcsetcALTV.u φUWUni
funcringcsetcALTV.f φF=xBBasex
funcringcsetcALTV.g φG=xB,yBIxRingHomy
Assertion funcringcsetclem9ALTV φXBYBZBHXHomRYKYHomRZXGZKXYcompRZH=YGZKFXFYcompSFZXGYH

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r R=RingCatALTVU
2 funcringcsetcALTV.s S=SetCatU
3 funcringcsetcALTV.b B=BaseR
4 funcringcsetcALTV.c C=BaseS
5 funcringcsetcALTV.u φUWUni
6 funcringcsetcALTV.f φF=xBBasex
7 funcringcsetcALTV.g φG=xB,yBIxRingHomy
8 5 adantr φXBYBZBUWUni
9 eqid HomR=HomR
10 simpr1 φXBYBZBXB
11 simpr2 φXBYBZBYB
12 1 3 8 9 10 11 ringchomALTV φXBYBZBXHomRY=XRingHomY
13 12 eleq2d φXBYBZBHXHomRYHXRingHomY
14 simpr3 φXBYBZBZB
15 1 3 8 9 11 14 ringchomALTV φXBYBZBYHomRZ=YRingHomZ
16 15 eleq2d φXBYBZBKYHomRZKYRingHomZ
17 13 16 anbi12d φXBYBZBHXHomRYKYHomRZHXRingHomYKYRingHomZ
18 rhmco KYRingHomZHXRingHomYKHXRingHomZ
19 18 ancoms HXRingHomYKYRingHomZKHXRingHomZ
20 19 adantl φXBYBZBHXRingHomYKYRingHomZKHXRingHomZ
21 fvresi KHXRingHomZIXRingHomZKH=KH
22 20 21 syl φXBYBZBHXRingHomYKYRingHomZIXRingHomZKH=KH
23 1 2 3 4 5 6 7 funcringcsetclem5ALTV φXBZBXGZ=IXRingHomZ
24 23 3adantr2 φXBYBZBXGZ=IXRingHomZ
25 24 adantr φXBYBZBHXRingHomYKYRingHomZXGZ=IXRingHomZ
26 8 adantr φXBYBZBHXRingHomYKYRingHomZUWUni
27 eqid compR=compR
28 10 adantr φXBYBZBHXRingHomYKYRingHomZXB
29 11 adantr φXBYBZBHXRingHomYKYRingHomZYB
30 14 adantr φXBYBZBHXRingHomYKYRingHomZZB
31 simprl φXBYBZBHXRingHomYKYRingHomZHXRingHomY
32 simprr φXBYBZBHXRingHomYKYRingHomZKYRingHomZ
33 1 3 26 27 28 29 30 31 32 ringccoALTV φXBYBZBHXRingHomYKYRingHomZKXYcompRZH=KH
34 25 33 fveq12d φXBYBZBHXRingHomYKYRingHomZXGZKXYcompRZH=IXRingHomZKH
35 eqid compS=compS
36 1 2 3 4 5 6 funcringcsetclem2ALTV φXBFXU
37 36 3ad2antr1 φXBYBZBFXU
38 37 adantr φXBYBZBHXRingHomYKYRingHomZFXU
39 1 2 3 4 5 6 funcringcsetclem2ALTV φYBFYU
40 39 3ad2antr2 φXBYBZBFYU
41 40 adantr φXBYBZBHXRingHomYKYRingHomZFYU
42 1 2 3 4 5 6 funcringcsetclem2ALTV φZBFZU
43 42 3ad2antr3 φXBYBZBFZU
44 43 adantr φXBYBZBHXRingHomYKYRingHomZFZU
45 eqid BaseX=BaseX
46 eqid BaseY=BaseY
47 45 46 rhmf HXRingHomYH:BaseXBaseY
48 47 ad2antrl φXBYBZBHXRingHomYKYRingHomZH:BaseXBaseY
49 1 2 3 4 5 6 funcringcsetclem1ALTV φXBFX=BaseX
50 49 3ad2antr1 φXBYBZBFX=BaseX
51 1 2 3 4 5 6 funcringcsetclem1ALTV φYBFY=BaseY
52 51 3ad2antr2 φXBYBZBFY=BaseY
53 50 52 feq23d φXBYBZBH:FXFYH:BaseXBaseY
54 53 adantr φXBYBZBHXRingHomYKYRingHomZH:FXFYH:BaseXBaseY
55 48 54 mpbird φXBYBZBHXRingHomYKYRingHomZH:FXFY
56 simpll φXBYBZBHXRingHomYKYRingHomZφ
57 3simpa XBYBZBXBYB
58 57 ad2antlr φXBYBZBHXRingHomYKYRingHomZXBYB
59 1 2 3 4 5 6 7 funcringcsetclem6ALTV φXBYBHXRingHomYXGYH=H
60 56 58 31 59 syl3anc φXBYBZBHXRingHomYKYRingHomZXGYH=H
61 60 feq1d φXBYBZBHXRingHomYKYRingHomZXGYH:FXFYH:FXFY
62 55 61 mpbird φXBYBZBHXRingHomYKYRingHomZXGYH:FXFY
63 eqid BaseZ=BaseZ
64 46 63 rhmf KYRingHomZK:BaseYBaseZ
65 64 ad2antll φXBYBZBHXRingHomYKYRingHomZK:BaseYBaseZ
66 1 2 3 4 5 6 funcringcsetclem1ALTV φZBFZ=BaseZ
67 66 3ad2antr3 φXBYBZBFZ=BaseZ
68 52 67 feq23d φXBYBZBK:FYFZK:BaseYBaseZ
69 68 adantr φXBYBZBHXRingHomYKYRingHomZK:FYFZK:BaseYBaseZ
70 65 69 mpbird φXBYBZBHXRingHomYKYRingHomZK:FYFZ
71 3simpc XBYBZBYBZB
72 71 ad2antlr φXBYBZBHXRingHomYKYRingHomZYBZB
73 1 2 3 4 5 6 7 funcringcsetclem6ALTV φYBZBKYRingHomZYGZK=K
74 56 72 32 73 syl3anc φXBYBZBHXRingHomYKYRingHomZYGZK=K
75 74 feq1d φXBYBZBHXRingHomYKYRingHomZYGZK:FYFZK:FYFZ
76 70 75 mpbird φXBYBZBHXRingHomYKYRingHomZYGZK:FYFZ
77 2 26 35 38 41 44 62 76 setcco φXBYBZBHXRingHomYKYRingHomZYGZKFXFYcompSFZXGYH=YGZKXGYH
78 74 60 coeq12d φXBYBZBHXRingHomYKYRingHomZYGZKXGYH=KH
79 77 78 eqtrd φXBYBZBHXRingHomYKYRingHomZYGZKFXFYcompSFZXGYH=KH
80 22 34 79 3eqtr4d φXBYBZBHXRingHomYKYRingHomZXGZKXYcompRZH=YGZKFXFYcompSFZXGYH
81 80 ex φXBYBZBHXRingHomYKYRingHomZXGZKXYcompRZH=YGZKFXFYcompSFZXGYH
82 17 81 sylbid φXBYBZBHXHomRYKYHomRZXGZKXYcompRZH=YGZKFXFYcompSFZXGYH
83 82 3impia φXBYBZBHXHomRYKYHomRZXGZKXYcompRZH=YGZKFXFYcompSFZXGYH