Step |
Hyp |
Ref |
Expression |
1 |
|
funcringcsetcALTV.r |
|
2 |
|
funcringcsetcALTV.s |
|
3 |
|
funcringcsetcALTV.b |
|
4 |
|
funcringcsetcALTV.c |
|
5 |
|
funcringcsetcALTV.u |
|
6 |
|
funcringcsetcALTV.f |
|
7 |
|
funcringcsetcALTV.g |
|
8 |
5
|
adantr |
|
9 |
|
eqid |
|
10 |
|
simpr1 |
|
11 |
|
simpr2 |
|
12 |
1 3 8 9 10 11
|
ringchomALTV |
|
13 |
12
|
eleq2d |
|
14 |
|
simpr3 |
|
15 |
1 3 8 9 11 14
|
ringchomALTV |
|
16 |
15
|
eleq2d |
|
17 |
13 16
|
anbi12d |
|
18 |
|
rhmco |
|
19 |
18
|
ancoms |
|
20 |
19
|
adantl |
|
21 |
|
fvresi |
|
22 |
20 21
|
syl |
|
23 |
1 2 3 4 5 6 7
|
funcringcsetclem5ALTV |
|
24 |
23
|
3adantr2 |
|
25 |
24
|
adantr |
|
26 |
8
|
adantr |
|
27 |
|
eqid |
|
28 |
10
|
adantr |
|
29 |
11
|
adantr |
|
30 |
14
|
adantr |
|
31 |
|
simprl |
|
32 |
|
simprr |
|
33 |
1 3 26 27 28 29 30 31 32
|
ringccoALTV |
|
34 |
25 33
|
fveq12d |
|
35 |
|
eqid |
|
36 |
1 2 3 4 5 6
|
funcringcsetclem2ALTV |
|
37 |
36
|
3ad2antr1 |
|
38 |
37
|
adantr |
|
39 |
1 2 3 4 5 6
|
funcringcsetclem2ALTV |
|
40 |
39
|
3ad2antr2 |
|
41 |
40
|
adantr |
|
42 |
1 2 3 4 5 6
|
funcringcsetclem2ALTV |
|
43 |
42
|
3ad2antr3 |
|
44 |
43
|
adantr |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
45 46
|
rhmf |
|
48 |
47
|
ad2antrl |
|
49 |
1 2 3 4 5 6
|
funcringcsetclem1ALTV |
|
50 |
49
|
3ad2antr1 |
|
51 |
1 2 3 4 5 6
|
funcringcsetclem1ALTV |
|
52 |
51
|
3ad2antr2 |
|
53 |
50 52
|
feq23d |
|
54 |
53
|
adantr |
|
55 |
48 54
|
mpbird |
|
56 |
|
simpll |
|
57 |
|
3simpa |
|
58 |
57
|
ad2antlr |
|
59 |
1 2 3 4 5 6 7
|
funcringcsetclem6ALTV |
|
60 |
56 58 31 59
|
syl3anc |
|
61 |
60
|
feq1d |
|
62 |
55 61
|
mpbird |
|
63 |
|
eqid |
|
64 |
46 63
|
rhmf |
|
65 |
64
|
ad2antll |
|
66 |
1 2 3 4 5 6
|
funcringcsetclem1ALTV |
|
67 |
66
|
3ad2antr3 |
|
68 |
52 67
|
feq23d |
|
69 |
68
|
adantr |
|
70 |
65 69
|
mpbird |
|
71 |
|
3simpc |
|
72 |
71
|
ad2antlr |
|
73 |
1 2 3 4 5 6 7
|
funcringcsetclem6ALTV |
|
74 |
56 72 32 73
|
syl3anc |
|
75 |
74
|
feq1d |
|
76 |
70 75
|
mpbird |
|
77 |
2 26 35 38 41 44 62 76
|
setcco |
|
78 |
74 60
|
coeq12d |
|
79 |
77 78
|
eqtrd |
|
80 |
22 34 79
|
3eqtr4d |
|
81 |
80
|
ex |
|
82 |
17 81
|
sylbid |
|
83 |
82
|
3impia |
|