Step |
Hyp |
Ref |
Expression |
1 |
|
irinitoringc.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
2 |
|
irinitoringc.z |
⊢ ( 𝜑 → ℤring ∈ 𝑈 ) |
3 |
|
irinitoringc.c |
⊢ 𝐶 = ( RingCat ‘ 𝑈 ) |
4 |
|
zex |
⊢ ℤ ∈ V |
5 |
4
|
mptex |
⊢ ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) ∈ V |
6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
7 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
8 |
3 6 1 7
|
ringchomfval |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( RingHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( Hom ‘ 𝐶 ) = ( RingHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
10 |
9
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = ( ℤring ( RingHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) 𝑟 ) ) |
11 |
|
id |
⊢ ( ℤring ∈ 𝑈 → ℤring ∈ 𝑈 ) |
12 |
|
zringring |
⊢ ℤring ∈ Ring |
13 |
12
|
a1i |
⊢ ( ℤring ∈ 𝑈 → ℤring ∈ Ring ) |
14 |
11 13
|
elind |
⊢ ( ℤring ∈ 𝑈 → ℤring ∈ ( 𝑈 ∩ Ring ) ) |
15 |
2 14
|
syl |
⊢ ( 𝜑 → ℤring ∈ ( 𝑈 ∩ Ring ) ) |
16 |
3 6 1
|
ringcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Ring ) ) |
17 |
15 16
|
eleqtrrd |
⊢ ( 𝜑 → ℤring ∈ ( Base ‘ 𝐶 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ℤring ∈ ( Base ‘ 𝐶 ) ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑟 ∈ ( Base ‘ 𝐶 ) ) |
20 |
18 19
|
ovresd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℤring ( RingHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) 𝑟 ) = ( ℤring RingHom 𝑟 ) ) |
21 |
16
|
eleq2d |
⊢ ( 𝜑 → ( 𝑟 ∈ ( Base ‘ 𝐶 ) ↔ 𝑟 ∈ ( 𝑈 ∩ Ring ) ) ) |
22 |
|
elin |
⊢ ( 𝑟 ∈ ( 𝑈 ∩ Ring ) ↔ ( 𝑟 ∈ 𝑈 ∧ 𝑟 ∈ Ring ) ) |
23 |
22
|
simprbi |
⊢ ( 𝑟 ∈ ( 𝑈 ∩ Ring ) → 𝑟 ∈ Ring ) |
24 |
21 23
|
syl6bi |
⊢ ( 𝜑 → ( 𝑟 ∈ ( Base ‘ 𝐶 ) → 𝑟 ∈ Ring ) ) |
25 |
24
|
imp |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑟 ∈ Ring ) |
26 |
|
eqid |
⊢ ( .g ‘ 𝑟 ) = ( .g ‘ 𝑟 ) |
27 |
|
eqid |
⊢ ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) = ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) |
28 |
|
eqid |
⊢ ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑟 ) |
29 |
26 27 28
|
mulgrhm2 |
⊢ ( 𝑟 ∈ Ring → ( ℤring RingHom 𝑟 ) = { ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) |
30 |
25 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℤring RingHom 𝑟 ) = { ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) |
31 |
10 20 30
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = { ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) |
32 |
|
sneq |
⊢ ( 𝑓 = ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) → { 𝑓 } = { ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) |
33 |
32
|
eqeq2d |
⊢ ( 𝑓 = ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) → ( ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = { 𝑓 } ↔ ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = { ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } ) ) |
34 |
33
|
spcegv |
⊢ ( ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) ∈ V → ( ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = { ( 𝑧 ∈ ℤ ↦ ( 𝑧 ( .g ‘ 𝑟 ) ( 1r ‘ 𝑟 ) ) ) } → ∃ 𝑓 ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = { 𝑓 } ) ) |
35 |
5 31 34
|
mpsyl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ∃ 𝑓 ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = { 𝑓 } ) |
36 |
|
eusn |
⊢ ( ∃! 𝑓 𝑓 ∈ ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) ↔ ∃ 𝑓 ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) = { 𝑓 } ) |
37 |
35 36
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ∃! 𝑓 𝑓 ∈ ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) ) |
38 |
37
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) ) |
39 |
3
|
ringccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
40 |
1 39
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
41 |
12
|
a1i |
⊢ ( 𝜑 → ℤring ∈ Ring ) |
42 |
2 41
|
elind |
⊢ ( 𝜑 → ℤring ∈ ( 𝑈 ∩ Ring ) ) |
43 |
42 16
|
eleqtrrd |
⊢ ( 𝜑 → ℤring ∈ ( Base ‘ 𝐶 ) ) |
44 |
6 7 40 43
|
isinito |
⊢ ( 𝜑 → ( ℤring ∈ ( InitO ‘ 𝐶 ) ↔ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! 𝑓 𝑓 ∈ ( ℤring ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
45 |
38 44
|
mpbird |
⊢ ( 𝜑 → ℤring ∈ ( InitO ‘ 𝐶 ) ) |