Step |
Hyp |
Ref |
Expression |
1 |
|
zrtermoringc.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
2 |
|
zrtermoringc.c |
⊢ 𝐶 = ( RingCat ‘ 𝑈 ) |
3 |
|
zrtermoringc.z |
⊢ ( 𝜑 → 𝑍 ∈ ( Ring ∖ NzRing ) ) |
4 |
|
zrtermoringc.e |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
6 |
2 5 1
|
ringcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Ring ) ) |
7 |
6
|
eleq2d |
⊢ ( 𝜑 → ( 𝑟 ∈ ( Base ‘ 𝐶 ) ↔ 𝑟 ∈ ( 𝑈 ∩ Ring ) ) ) |
8 |
|
elin |
⊢ ( 𝑟 ∈ ( 𝑈 ∩ Ring ) ↔ ( 𝑟 ∈ 𝑈 ∧ 𝑟 ∈ Ring ) ) |
9 |
8
|
simprbi |
⊢ ( 𝑟 ∈ ( 𝑈 ∩ Ring ) → 𝑟 ∈ Ring ) |
10 |
7 9
|
syl6bi |
⊢ ( 𝜑 → ( 𝑟 ∈ ( Base ‘ 𝐶 ) → 𝑟 ∈ Ring ) ) |
11 |
10
|
imp |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑟 ∈ Ring ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑍 ∈ ( Ring ∖ NzRing ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑟 ) = ( Base ‘ 𝑟 ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑍 ) = ( 0g ‘ 𝑍 ) |
15 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) |
16 |
13 14 15
|
c0rhm |
⊢ ( ( 𝑟 ∈ Ring ∧ 𝑍 ∈ ( Ring ∖ NzRing ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) |
17 |
11 12 16
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) |
18 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) |
19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑈 ∈ 𝑉 ) |
20 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑟 ∈ ( Base ‘ 𝐶 ) ) |
22 |
3
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
23 |
4 22
|
elind |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑈 ∩ Ring ) ) |
24 |
23 6
|
eleqtrrd |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
26 |
2 5 19 20 21 25
|
ringchom |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) = ( 𝑟 RingHom 𝑍 ) ) |
27 |
26
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑟 RingHom 𝑍 ) = ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
28 |
27
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) ) |
29 |
28
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
30 |
26
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ↔ ℎ ∈ ( 𝑟 RingHom 𝑍 ) ) ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
32 |
13 31
|
rhmf |
⊢ ( ℎ ∈ ( 𝑟 RingHom 𝑍 ) → ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) |
33 |
30 32
|
syl6bi |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ) |
35 |
|
ffn |
⊢ ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) → ℎ Fn ( Base ‘ 𝑟 ) ) |
36 |
35
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) → ℎ Fn ( Base ‘ 𝑟 ) ) |
37 |
|
fvex |
⊢ ( 0g ‘ 𝑍 ) ∈ V |
38 |
37 15
|
fnmpti |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) Fn ( Base ‘ 𝑟 ) |
39 |
38
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) Fn ( Base ‘ 𝑟 ) ) |
40 |
31 14
|
0ringbas |
⊢ ( 𝑍 ∈ ( Ring ∖ NzRing ) → ( Base ‘ 𝑍 ) = { ( 0g ‘ 𝑍 ) } ) |
41 |
3 40
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑍 ) = { ( 0g ‘ 𝑍 ) } ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( Base ‘ 𝑍 ) = { ( 0g ‘ 𝑍 ) } ) |
43 |
42
|
feq3d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ↔ ℎ : ( Base ‘ 𝑟 ) ⟶ { ( 0g ‘ 𝑍 ) } ) ) |
44 |
|
fvconst |
⊢ ( ( ℎ : ( Base ‘ 𝑟 ) ⟶ { ( 0g ‘ 𝑍 ) } ∧ 𝑎 ∈ ( Base ‘ 𝑟 ) ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) |
45 |
44
|
ex |
⊢ ( ℎ : ( Base ‘ 𝑟 ) ⟶ { ( 0g ‘ 𝑍 ) } → ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) ) |
46 |
43 45
|
syl6bi |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) → ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) ) ) |
47 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) → ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) ) ) |
48 |
47
|
imp31 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑟 ) ) → ( ℎ ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) |
49 |
|
eqidd |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) |
50 |
|
eqidd |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑟 ) ∧ 𝑥 = 𝑎 ) → ( 0g ‘ 𝑍 ) = ( 0g ‘ 𝑍 ) ) |
51 |
|
id |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑟 ) → 𝑎 ∈ ( Base ‘ 𝑟 ) ) |
52 |
37
|
a1i |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( 0g ‘ 𝑍 ) ∈ V ) |
53 |
49 50 51 52
|
fvmptd |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑟 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) |
54 |
53
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑟 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ‘ 𝑎 ) = ( 0g ‘ 𝑍 ) ) |
55 |
48 54
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑟 ) ) → ( ℎ ‘ 𝑎 ) = ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ‘ 𝑎 ) ) |
56 |
36 39 55
|
eqfnfvd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) ∧ ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) |
57 |
56
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ( ℎ : ( Base ‘ 𝑟 ) ⟶ ( Base ‘ 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) |
58 |
34 57
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) |
59 |
58
|
alrimiv |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ∀ ℎ ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) |
60 |
18 29 59
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ∧ ∀ ℎ ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) ) |
61 |
17 60
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ∧ ∀ ℎ ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) ) |
62 |
|
eleq1 |
⊢ ( ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) → ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) ) |
63 |
62
|
eqeu |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 RingHom 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ∧ ∀ ℎ ( ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) → ℎ = ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ ( 0g ‘ 𝑍 ) ) ) ) → ∃! ℎ ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
64 |
61 63
|
syl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ∃! ℎ ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
65 |
64
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
66 |
2
|
ringccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
67 |
1 66
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
68 |
5 20 67 24
|
istermo |
⊢ ( 𝜑 → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) ↔ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑟 ( Hom ‘ 𝐶 ) 𝑍 ) ) ) |
69 |
65 68
|
mpbird |
⊢ ( 𝜑 → 𝑍 ∈ ( TermO ‘ 𝐶 ) ) |