| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrtermoringc.u |
|- ( ph -> U e. V ) |
| 2 |
|
zrtermoringc.c |
|- C = ( RingCat ` U ) |
| 3 |
|
zrtermoringc.z |
|- ( ph -> Z e. ( Ring \ NzRing ) ) |
| 4 |
|
zrtermoringc.e |
|- ( ph -> Z e. U ) |
| 5 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 6 |
2 5 1
|
ringcbas |
|- ( ph -> ( Base ` C ) = ( U i^i Ring ) ) |
| 7 |
6
|
eleq2d |
|- ( ph -> ( r e. ( Base ` C ) <-> r e. ( U i^i Ring ) ) ) |
| 8 |
|
elin |
|- ( r e. ( U i^i Ring ) <-> ( r e. U /\ r e. Ring ) ) |
| 9 |
8
|
simprbi |
|- ( r e. ( U i^i Ring ) -> r e. Ring ) |
| 10 |
7 9
|
biimtrdi |
|- ( ph -> ( r e. ( Base ` C ) -> r e. Ring ) ) |
| 11 |
10
|
imp |
|- ( ( ph /\ r e. ( Base ` C ) ) -> r e. Ring ) |
| 12 |
3
|
adantr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Ring \ NzRing ) ) |
| 13 |
|
eqid |
|- ( Base ` r ) = ( Base ` r ) |
| 14 |
|
eqid |
|- ( 0g ` Z ) = ( 0g ` Z ) |
| 15 |
|
eqid |
|- ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) |
| 16 |
13 14 15
|
c0rhm |
|- ( ( r e. Ring /\ Z e. ( Ring \ NzRing ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) |
| 17 |
11 12 16
|
syl2anc |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) |
| 18 |
|
simpr |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) |
| 19 |
1
|
adantr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> U e. V ) |
| 20 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 21 |
|
simpr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> r e. ( Base ` C ) ) |
| 22 |
3
|
eldifad |
|- ( ph -> Z e. Ring ) |
| 23 |
4 22
|
elind |
|- ( ph -> Z e. ( U i^i Ring ) ) |
| 24 |
23 6
|
eleqtrrd |
|- ( ph -> Z e. ( Base ` C ) ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Base ` C ) ) |
| 26 |
2 5 19 20 21 25
|
ringchom |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( r ( Hom ` C ) Z ) = ( r RingHom Z ) ) |
| 27 |
26
|
eqcomd |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( r RingHom Z ) = ( r ( Hom ` C ) Z ) ) |
| 28 |
27
|
eleq2d |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) <-> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) ) |
| 29 |
28
|
biimpa |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) |
| 30 |
26
|
eleq2d |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( r ( Hom ` C ) Z ) <-> h e. ( r RingHom Z ) ) ) |
| 31 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
| 32 |
13 31
|
rhmf |
|- ( h e. ( r RingHom Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) |
| 33 |
30 32
|
biimtrdi |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) ) |
| 34 |
33
|
adantr |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) ) |
| 35 |
|
ffn |
|- ( h : ( Base ` r ) --> ( Base ` Z ) -> h Fn ( Base ` r ) ) |
| 36 |
35
|
adantl |
|- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> h Fn ( Base ` r ) ) |
| 37 |
|
fvex |
|- ( 0g ` Z ) e. _V |
| 38 |
37 15
|
fnmpti |
|- ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) Fn ( Base ` r ) |
| 39 |
38
|
a1i |
|- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) Fn ( Base ` r ) ) |
| 40 |
31 14
|
0ringbas |
|- ( Z e. ( Ring \ NzRing ) -> ( Base ` Z ) = { ( 0g ` Z ) } ) |
| 41 |
3 40
|
syl |
|- ( ph -> ( Base ` Z ) = { ( 0g ` Z ) } ) |
| 42 |
41
|
adantr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( Base ` Z ) = { ( 0g ` Z ) } ) |
| 43 |
42
|
feq3d |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) <-> h : ( Base ` r ) --> { ( 0g ` Z ) } ) ) |
| 44 |
|
fvconst |
|- ( ( h : ( Base ` r ) --> { ( 0g ` Z ) } /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( 0g ` Z ) ) |
| 45 |
44
|
ex |
|- ( h : ( Base ` r ) --> { ( 0g ` Z ) } -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) |
| 46 |
43 45
|
biimtrdi |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) ) |
| 47 |
46
|
adantr |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) ) |
| 48 |
47
|
imp31 |
|- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( 0g ` Z ) ) |
| 49 |
|
eqidd |
|- ( a e. ( Base ` r ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) |
| 50 |
|
eqidd |
|- ( ( a e. ( Base ` r ) /\ x = a ) -> ( 0g ` Z ) = ( 0g ` Z ) ) |
| 51 |
|
id |
|- ( a e. ( Base ` r ) -> a e. ( Base ` r ) ) |
| 52 |
37
|
a1i |
|- ( a e. ( Base ` r ) -> ( 0g ` Z ) e. _V ) |
| 53 |
49 50 51 52
|
fvmptd |
|- ( a e. ( Base ` r ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) = ( 0g ` Z ) ) |
| 54 |
53
|
adantl |
|- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) = ( 0g ` Z ) ) |
| 55 |
48 54
|
eqtr4d |
|- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) ) |
| 56 |
36 39 55
|
eqfnfvd |
|- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) |
| 57 |
56
|
ex |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) |
| 58 |
34 57
|
syld |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) |
| 59 |
58
|
alrimiv |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) |
| 60 |
18 29 59
|
3jca |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) ) |
| 61 |
17 60
|
mpdan |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) ) |
| 62 |
|
eleq1 |
|- ( h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) <-> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) ) |
| 63 |
62
|
eqeu |
|- ( ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) -> E! h h e. ( r ( Hom ` C ) Z ) ) |
| 64 |
61 63
|
syl |
|- ( ( ph /\ r e. ( Base ` C ) ) -> E! h h e. ( r ( Hom ` C ) Z ) ) |
| 65 |
64
|
ralrimiva |
|- ( ph -> A. r e. ( Base ` C ) E! h h e. ( r ( Hom ` C ) Z ) ) |
| 66 |
2
|
ringccat |
|- ( U e. V -> C e. Cat ) |
| 67 |
1 66
|
syl |
|- ( ph -> C e. Cat ) |
| 68 |
5 20 67 24
|
istermo |
|- ( ph -> ( Z e. ( TermO ` C ) <-> A. r e. ( Base ` C ) E! h h e. ( r ( Hom ` C ) Z ) ) ) |
| 69 |
65 68
|
mpbird |
|- ( ph -> Z e. ( TermO ` C ) ) |