Step |
Hyp |
Ref |
Expression |
1 |
|
zrtermoringc.u |
|- ( ph -> U e. V ) |
2 |
|
zrtermoringc.c |
|- C = ( RingCat ` U ) |
3 |
|
zrtermoringc.z |
|- ( ph -> Z e. ( Ring \ NzRing ) ) |
4 |
|
zrtermoringc.e |
|- ( ph -> Z e. U ) |
5 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
6 |
2 5 1
|
ringcbas |
|- ( ph -> ( Base ` C ) = ( U i^i Ring ) ) |
7 |
6
|
eleq2d |
|- ( ph -> ( r e. ( Base ` C ) <-> r e. ( U i^i Ring ) ) ) |
8 |
|
elin |
|- ( r e. ( U i^i Ring ) <-> ( r e. U /\ r e. Ring ) ) |
9 |
8
|
simprbi |
|- ( r e. ( U i^i Ring ) -> r e. Ring ) |
10 |
7 9
|
syl6bi |
|- ( ph -> ( r e. ( Base ` C ) -> r e. Ring ) ) |
11 |
10
|
imp |
|- ( ( ph /\ r e. ( Base ` C ) ) -> r e. Ring ) |
12 |
3
|
adantr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Ring \ NzRing ) ) |
13 |
|
eqid |
|- ( Base ` r ) = ( Base ` r ) |
14 |
|
eqid |
|- ( 0g ` Z ) = ( 0g ` Z ) |
15 |
|
eqid |
|- ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) |
16 |
13 14 15
|
c0rhm |
|- ( ( r e. Ring /\ Z e. ( Ring \ NzRing ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) |
17 |
11 12 16
|
syl2anc |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) |
18 |
|
simpr |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) |
19 |
1
|
adantr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> U e. V ) |
20 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
21 |
|
simpr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> r e. ( Base ` C ) ) |
22 |
3
|
eldifad |
|- ( ph -> Z e. Ring ) |
23 |
4 22
|
elind |
|- ( ph -> Z e. ( U i^i Ring ) ) |
24 |
23 6
|
eleqtrrd |
|- ( ph -> Z e. ( Base ` C ) ) |
25 |
24
|
adantr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Base ` C ) ) |
26 |
2 5 19 20 21 25
|
ringchom |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( r ( Hom ` C ) Z ) = ( r RingHom Z ) ) |
27 |
26
|
eqcomd |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( r RingHom Z ) = ( r ( Hom ` C ) Z ) ) |
28 |
27
|
eleq2d |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) <-> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) ) |
29 |
28
|
biimpa |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) |
30 |
26
|
eleq2d |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( r ( Hom ` C ) Z ) <-> h e. ( r RingHom Z ) ) ) |
31 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
32 |
13 31
|
rhmf |
|- ( h e. ( r RingHom Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) |
33 |
30 32
|
syl6bi |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) ) |
34 |
33
|
adantr |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) ) |
35 |
|
ffn |
|- ( h : ( Base ` r ) --> ( Base ` Z ) -> h Fn ( Base ` r ) ) |
36 |
35
|
adantl |
|- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> h Fn ( Base ` r ) ) |
37 |
|
fvex |
|- ( 0g ` Z ) e. _V |
38 |
37 15
|
fnmpti |
|- ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) Fn ( Base ` r ) |
39 |
38
|
a1i |
|- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) Fn ( Base ` r ) ) |
40 |
31 14
|
0ringbas |
|- ( Z e. ( Ring \ NzRing ) -> ( Base ` Z ) = { ( 0g ` Z ) } ) |
41 |
3 40
|
syl |
|- ( ph -> ( Base ` Z ) = { ( 0g ` Z ) } ) |
42 |
41
|
adantr |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( Base ` Z ) = { ( 0g ` Z ) } ) |
43 |
42
|
feq3d |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) <-> h : ( Base ` r ) --> { ( 0g ` Z ) } ) ) |
44 |
|
fvconst |
|- ( ( h : ( Base ` r ) --> { ( 0g ` Z ) } /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( 0g ` Z ) ) |
45 |
44
|
ex |
|- ( h : ( Base ` r ) --> { ( 0g ` Z ) } -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) |
46 |
43 45
|
syl6bi |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) ) |
47 |
46
|
adantr |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) ) |
48 |
47
|
imp31 |
|- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( 0g ` Z ) ) |
49 |
|
eqidd |
|- ( a e. ( Base ` r ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) |
50 |
|
eqidd |
|- ( ( a e. ( Base ` r ) /\ x = a ) -> ( 0g ` Z ) = ( 0g ` Z ) ) |
51 |
|
id |
|- ( a e. ( Base ` r ) -> a e. ( Base ` r ) ) |
52 |
37
|
a1i |
|- ( a e. ( Base ` r ) -> ( 0g ` Z ) e. _V ) |
53 |
49 50 51 52
|
fvmptd |
|- ( a e. ( Base ` r ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) = ( 0g ` Z ) ) |
54 |
53
|
adantl |
|- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) = ( 0g ` Z ) ) |
55 |
48 54
|
eqtr4d |
|- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) ) |
56 |
36 39 55
|
eqfnfvd |
|- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) |
57 |
56
|
ex |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) |
58 |
34 57
|
syld |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) |
59 |
58
|
alrimiv |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) |
60 |
18 29 59
|
3jca |
|- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) ) |
61 |
17 60
|
mpdan |
|- ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) ) |
62 |
|
eleq1 |
|- ( h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) <-> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) ) |
63 |
62
|
eqeu |
|- ( ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) -> E! h h e. ( r ( Hom ` C ) Z ) ) |
64 |
61 63
|
syl |
|- ( ( ph /\ r e. ( Base ` C ) ) -> E! h h e. ( r ( Hom ` C ) Z ) ) |
65 |
64
|
ralrimiva |
|- ( ph -> A. r e. ( Base ` C ) E! h h e. ( r ( Hom ` C ) Z ) ) |
66 |
2
|
ringccat |
|- ( U e. V -> C e. Cat ) |
67 |
1 66
|
syl |
|- ( ph -> C e. Cat ) |
68 |
5 20 67 24
|
istermo |
|- ( ph -> ( Z e. ( TermO ` C ) <-> A. r e. ( Base ` C ) E! h h e. ( r ( Hom ` C ) Z ) ) ) |
69 |
65 68
|
mpbird |
|- ( ph -> Z e. ( TermO ` C ) ) |