Step |
Hyp |
Ref |
Expression |
1 |
|
c0mhm.b |
|- B = ( Base ` S ) |
2 |
|
c0mhm.0 |
|- .0. = ( 0g ` T ) |
3 |
|
c0mhm.h |
|- H = ( x e. B |-> .0. ) |
4 |
|
eldifi |
|- ( T e. ( Ring \ NzRing ) -> T e. Ring ) |
5 |
4
|
anim2i |
|- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> ( S e. Ring /\ T e. Ring ) ) |
6 |
|
ringgrp |
|- ( S e. Ring -> S e. Grp ) |
7 |
|
ringgrp |
|- ( T e. Ring -> T e. Grp ) |
8 |
4 7
|
syl |
|- ( T e. ( Ring \ NzRing ) -> T e. Grp ) |
9 |
1 2 3
|
c0ghm |
|- ( ( S e. Grp /\ T e. Grp ) -> H e. ( S GrpHom T ) ) |
10 |
6 8 9
|
syl2an |
|- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> H e. ( S GrpHom T ) ) |
11 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
12 |
|
eqid |
|- ( 1r ` T ) = ( 1r ` T ) |
13 |
11 2 12
|
0ring1eq0 |
|- ( T e. ( Ring \ NzRing ) -> ( 1r ` T ) = .0. ) |
14 |
13
|
eqcomd |
|- ( T e. ( Ring \ NzRing ) -> .0. = ( 1r ` T ) ) |
15 |
14
|
mpteq2dv |
|- ( T e. ( Ring \ NzRing ) -> ( x e. B |-> .0. ) = ( x e. B |-> ( 1r ` T ) ) ) |
16 |
15
|
adantl |
|- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> ( x e. B |-> .0. ) = ( x e. B |-> ( 1r ` T ) ) ) |
17 |
3 16
|
syl5eq |
|- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> H = ( x e. B |-> ( 1r ` T ) ) ) |
18 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
19 |
18
|
ringmgp |
|- ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) |
20 |
|
eqid |
|- ( mulGrp ` T ) = ( mulGrp ` T ) |
21 |
20
|
ringmgp |
|- ( T e. Ring -> ( mulGrp ` T ) e. Mnd ) |
22 |
4 21
|
syl |
|- ( T e. ( Ring \ NzRing ) -> ( mulGrp ` T ) e. Mnd ) |
23 |
18 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` S ) ) |
24 |
20 12
|
ringidval |
|- ( 1r ` T ) = ( 0g ` ( mulGrp ` T ) ) |
25 |
|
eqid |
|- ( x e. B |-> ( 1r ` T ) ) = ( x e. B |-> ( 1r ` T ) ) |
26 |
23 24 25
|
c0mhm |
|- ( ( ( mulGrp ` S ) e. Mnd /\ ( mulGrp ` T ) e. Mnd ) -> ( x e. B |-> ( 1r ` T ) ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
27 |
19 22 26
|
syl2an |
|- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> ( x e. B |-> ( 1r ` T ) ) e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
28 |
17 27
|
eqeltrd |
|- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> H e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
29 |
10 28
|
jca |
|- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> ( H e. ( S GrpHom T ) /\ H e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) |
30 |
18 20
|
isrhm |
|- ( H e. ( S RingHom T ) <-> ( ( S e. Ring /\ T e. Ring ) /\ ( H e. ( S GrpHom T ) /\ H e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) ) ) |
31 |
5 29 30
|
sylanbrc |
|- ( ( S e. Ring /\ T e. ( Ring \ NzRing ) ) -> H e. ( S RingHom T ) ) |