Step |
Hyp |
Ref |
Expression |
1 |
|
c0mhm.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
2 |
|
c0mhm.0 |
⊢ 0 = ( 0g ‘ 𝑇 ) |
3 |
|
c0mhm.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) |
4 |
|
eldifi |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Ring ) |
5 |
4
|
anim2i |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑆 ∈ Ring ∧ 𝑇 ∈ Ring ) ) |
6 |
|
ringgrp |
⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Grp ) |
7 |
|
ringgrp |
⊢ ( 𝑇 ∈ Ring → 𝑇 ∈ Grp ) |
8 |
4 7
|
syl |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Grp ) |
9 |
1 2 3
|
c0ghm |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
10 |
6 8 9
|
syl2an |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
12 |
|
eqid |
⊢ ( 1r ‘ 𝑇 ) = ( 1r ‘ 𝑇 ) |
13 |
11 2 12
|
0ring1eq0 |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( 1r ‘ 𝑇 ) = 0 ) |
14 |
13
|
eqcomd |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 0 = ( 1r ‘ 𝑇 ) ) |
15 |
14
|
mpteq2dv |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( 𝑥 ∈ 𝐵 ↦ 0 ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑥 ∈ 𝐵 ↦ 0 ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
17 |
3 16
|
syl5eq |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
18 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
19 |
18
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
20 |
|
eqid |
⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) |
21 |
20
|
ringmgp |
⊢ ( 𝑇 ∈ Ring → ( mulGrp ‘ 𝑇 ) ∈ Mnd ) |
22 |
4 21
|
syl |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( mulGrp ‘ 𝑇 ) ∈ Mnd ) |
23 |
18 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
24 |
20 12
|
ringidval |
⊢ ( 1r ‘ 𝑇 ) = ( 0g ‘ ( mulGrp ‘ 𝑇 ) ) |
25 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) |
26 |
23 24 25
|
c0mhm |
⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ Mnd ∧ ( mulGrp ‘ 𝑇 ) ∈ Mnd ) → ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
27 |
19 22 26
|
syl2an |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
28 |
17 27
|
eqeltrd |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
29 |
10 28
|
jca |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) |
30 |
18 20
|
isrhm |
⊢ ( 𝐻 ∈ ( 𝑆 RingHom 𝑇 ) ↔ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ Ring ) ∧ ( 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) ) |
31 |
5 29 30
|
sylanbrc |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑆 RingHom 𝑇 ) ) |