Step |
Hyp |
Ref |
Expression |
1 |
|
0ringdif.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
0ringdif.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
0ring1eq0.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
eldif |
⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) ↔ ( 𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing ) ) |
5 |
|
0ringnnzr |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ↔ ¬ 𝑅 ∈ NzRing ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
7 |
6 2 3
|
0ring01eq |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) → 0 = 1 ) |
8 |
7
|
eqcomd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) → 1 = 0 ) |
9 |
8
|
ex |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 → 1 = 0 ) ) |
10 |
5 9
|
sylbird |
⊢ ( 𝑅 ∈ Ring → ( ¬ 𝑅 ∈ NzRing → 1 = 0 ) ) |
11 |
10
|
imp |
⊢ ( ( 𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing ) → 1 = 0 ) |
12 |
4 11
|
sylbi |
⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) → 1 = 0 ) |