Metamath Proof Explorer


Theorem 0ring1eq0

Description: In a zero ring, a ring which is not a nonzero ring, the unit equals the zero element. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses 0ringdif.b B = Base R
0ringdif.0 0 ˙ = 0 R
0ring1eq0.1 1 ˙ = 1 R
Assertion 0ring1eq0 R Ring NzRing 1 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 0ringdif.b B = Base R
2 0ringdif.0 0 ˙ = 0 R
3 0ring1eq0.1 1 ˙ = 1 R
4 eldif R Ring NzRing R Ring ¬ R NzRing
5 0ringnnzr R Ring Base R = 1 ¬ R NzRing
6 eqid Base R = Base R
7 6 2 3 0ring01eq R Ring Base R = 1 0 ˙ = 1 ˙
8 7 eqcomd R Ring Base R = 1 1 ˙ = 0 ˙
9 8 ex R Ring Base R = 1 1 ˙ = 0 ˙
10 5 9 sylbird R Ring ¬ R NzRing 1 ˙ = 0 ˙
11 10 imp R Ring ¬ R NzRing 1 ˙ = 0 ˙
12 4 11 sylbi R Ring NzRing 1 ˙ = 0 ˙