Step |
Hyp |
Ref |
Expression |
1 |
|
c0mhm.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
2 |
|
c0mhm.0 |
⊢ 0 = ( 0g ‘ 𝑇 ) |
3 |
|
c0mhm.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) |
4 |
|
ringssrng |
⊢ Ring ⊆ Rng |
5 |
4
|
a1i |
⊢ ( 𝑆 ∈ Rng → Ring ⊆ Rng ) |
6 |
5
|
ssdifssd |
⊢ ( 𝑆 ∈ Rng → ( Ring ∖ NzRing ) ⊆ Rng ) |
7 |
6
|
sseld |
⊢ ( 𝑆 ∈ Rng → ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Rng ) ) |
8 |
7
|
imdistani |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑆 ∈ Rng ∧ 𝑇 ∈ Rng ) ) |
9 |
|
rngabl |
⊢ ( 𝑆 ∈ Rng → 𝑆 ∈ Abel ) |
10 |
|
ablgrp |
⊢ ( 𝑆 ∈ Abel → 𝑆 ∈ Grp ) |
11 |
9 10
|
syl |
⊢ ( 𝑆 ∈ Rng → 𝑆 ∈ Grp ) |
12 |
|
eldifi |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Ring ) |
13 |
|
ringgrp |
⊢ ( 𝑇 ∈ Ring → 𝑇 ∈ Grp ) |
14 |
12 13
|
syl |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Grp ) |
15 |
1 2 3
|
c0ghm |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
16 |
11 14 15
|
syl2an |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
18 |
|
eqid |
⊢ ( 1r ‘ 𝑇 ) = ( 1r ‘ 𝑇 ) |
19 |
17 2 18
|
0ring1eq0 |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( 1r ‘ 𝑇 ) = 0 ) |
20 |
19
|
eqcomd |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 0 = ( 1r ‘ 𝑇 ) ) |
21 |
20
|
mpteq2dv |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( 𝑥 ∈ 𝐵 ↦ 0 ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑥 ∈ 𝐵 ↦ 0 ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
23 |
3 22
|
syl5eq |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ) |
24 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
25 |
24
|
rngmgp |
⊢ ( 𝑆 ∈ Rng → ( mulGrp ‘ 𝑆 ) ∈ Smgrp ) |
26 |
|
sgrpmgm |
⊢ ( ( mulGrp ‘ 𝑆 ) ∈ Smgrp → ( mulGrp ‘ 𝑆 ) ∈ Mgm ) |
27 |
25 26
|
syl |
⊢ ( 𝑆 ∈ Rng → ( mulGrp ‘ 𝑆 ) ∈ Mgm ) |
28 |
|
eqid |
⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) |
29 |
28
|
ringmgp |
⊢ ( 𝑇 ∈ Ring → ( mulGrp ‘ 𝑇 ) ∈ Mnd ) |
30 |
12 29
|
syl |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( mulGrp ‘ 𝑇 ) ∈ Mnd ) |
31 |
24 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
32 |
28 18
|
ringidval |
⊢ ( 1r ‘ 𝑇 ) = ( 0g ‘ ( mulGrp ‘ 𝑇 ) ) |
33 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) |
34 |
31 32 33
|
c0mgm |
⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ Mgm ∧ ( mulGrp ‘ 𝑇 ) ∈ Mnd ) → ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) |
35 |
27 30 34
|
syl2an |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑥 ∈ 𝐵 ↦ ( 1r ‘ 𝑇 ) ) ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) |
36 |
23 35
|
eqeltrd |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) |
37 |
16 36
|
jca |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) ) |
38 |
24 28
|
isrnghmmul |
⊢ ( 𝐻 ∈ ( 𝑆 RngHomo 𝑇 ) ↔ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ Rng ) ∧ ( 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐻 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) ) ) |
39 |
8 37 38
|
sylanbrc |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑆 RngHomo 𝑇 ) ) |