Metamath Proof Explorer


Theorem c0mgm

Description: The constant mapping to zero is a magma homomorphism into a monoid. Remark: Instead of the assumption that T is a monoid, it would be sufficient that T is a magma with a right or left identity. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses c0mhm.b 𝐵 = ( Base ‘ 𝑆 )
c0mhm.0 0 = ( 0g𝑇 )
c0mhm.h 𝐻 = ( 𝑥𝐵0 )
Assertion c0mgm ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → 𝐻 ∈ ( 𝑆 MgmHom 𝑇 ) )

Proof

Step Hyp Ref Expression
1 c0mhm.b 𝐵 = ( Base ‘ 𝑆 )
2 c0mhm.0 0 = ( 0g𝑇 )
3 c0mhm.h 𝐻 = ( 𝑥𝐵0 )
4 mndmgm ( 𝑇 ∈ Mnd → 𝑇 ∈ Mgm )
5 4 anim2i ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) )
6 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
7 6 2 mndidcl ( 𝑇 ∈ Mnd → 0 ∈ ( Base ‘ 𝑇 ) )
8 7 adantl ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → 0 ∈ ( Base ‘ 𝑇 ) )
9 8 adantr ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ 𝑥𝐵 ) → 0 ∈ ( Base ‘ 𝑇 ) )
10 9 3 fmptd ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑇 ) )
11 7 ancli ( 𝑇 ∈ Mnd → ( 𝑇 ∈ Mnd ∧ 0 ∈ ( Base ‘ 𝑇 ) ) )
12 11 adantl ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ( 𝑇 ∈ Mnd ∧ 0 ∈ ( Base ‘ 𝑇 ) ) )
13 eqid ( +g𝑇 ) = ( +g𝑇 )
14 6 13 2 mndlid ( ( 𝑇 ∈ Mnd ∧ 0 ∈ ( Base ‘ 𝑇 ) ) → ( 0 ( +g𝑇 ) 0 ) = 0 )
15 12 14 syl ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ( 0 ( +g𝑇 ) 0 ) = 0 )
16 15 adantr ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 0 ( +g𝑇 ) 0 ) = 0 )
17 3 a1i ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝐻 = ( 𝑥𝐵0 ) )
18 eqidd ( ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎𝐵𝑏𝐵 ) ) ∧ 𝑥 = 𝑎 ) → 0 = 0 )
19 simprl ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑎𝐵 )
20 8 adantr ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 0 ∈ ( Base ‘ 𝑇 ) )
21 17 18 19 20 fvmptd ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝐻𝑎 ) = 0 )
22 eqidd ( ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎𝐵𝑏𝐵 ) ) ∧ 𝑥 = 𝑏 ) → 0 = 0 )
23 simprr ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑏𝐵 )
24 17 22 23 20 fvmptd ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝐻𝑏 ) = 0 )
25 21 24 oveq12d ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( 𝐻𝑎 ) ( +g𝑇 ) ( 𝐻𝑏 ) ) = ( 0 ( +g𝑇 ) 0 ) )
26 eqidd ( ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎𝐵𝑏𝐵 ) ) ∧ 𝑥 = ( 𝑎 ( +g𝑆 ) 𝑏 ) ) → 0 = 0 )
27 eqid ( +g𝑆 ) = ( +g𝑆 )
28 1 27 mgmcl ( ( 𝑆 ∈ Mgm ∧ 𝑎𝐵𝑏𝐵 ) → ( 𝑎 ( +g𝑆 ) 𝑏 ) ∈ 𝐵 )
29 28 3expb ( ( 𝑆 ∈ Mgm ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝑎 ( +g𝑆 ) 𝑏 ) ∈ 𝐵 )
30 29 adantlr ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝑎 ( +g𝑆 ) 𝑏 ) ∈ 𝐵 )
31 17 26 30 20 fvmptd ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝐻 ‘ ( 𝑎 ( +g𝑆 ) 𝑏 ) ) = 0 )
32 16 25 31 3eqtr4rd ( ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝐻 ‘ ( 𝑎 ( +g𝑆 ) 𝑏 ) ) = ( ( 𝐻𝑎 ) ( +g𝑇 ) ( 𝐻𝑏 ) ) )
33 32 ralrimivva ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ∀ 𝑎𝐵𝑏𝐵 ( 𝐻 ‘ ( 𝑎 ( +g𝑆 ) 𝑏 ) ) = ( ( 𝐻𝑎 ) ( +g𝑇 ) ( 𝐻𝑏 ) ) )
34 10 33 jca ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑎𝐵𝑏𝐵 ( 𝐻 ‘ ( 𝑎 ( +g𝑆 ) 𝑏 ) ) = ( ( 𝐻𝑎 ) ( +g𝑇 ) ( 𝐻𝑏 ) ) ) )
35 1 6 27 13 ismgmhm ( 𝐻 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑎𝐵𝑏𝐵 ( 𝐻 ‘ ( 𝑎 ( +g𝑆 ) 𝑏 ) ) = ( ( 𝐻𝑎 ) ( +g𝑇 ) ( 𝐻𝑏 ) ) ) ) )
36 5 34 35 sylanbrc ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd ) → 𝐻 ∈ ( 𝑆 MgmHom 𝑇 ) )