Step |
Hyp |
Ref |
Expression |
1 |
|
zrrhm.b |
⊢ 𝐵 = ( Base ‘ 𝑇 ) |
2 |
|
zrrhm.0 |
⊢ 0 = ( 0g ‘ 𝑆 ) |
3 |
|
zrrhm.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) |
4 |
|
eldifi |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Ring ) |
5 |
|
ringrng |
⊢ ( 𝑇 ∈ Ring → 𝑇 ∈ Rng ) |
6 |
4 5
|
syl |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Rng ) |
7 |
6
|
anim1i |
⊢ ( ( 𝑇 ∈ ( Ring ∖ NzRing ) ∧ 𝑆 ∈ Rng ) → ( 𝑇 ∈ Rng ∧ 𝑆 ∈ Rng ) ) |
8 |
7
|
ancoms |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑇 ∈ Rng ∧ 𝑆 ∈ Rng ) ) |
9 |
|
rngabl |
⊢ ( 𝑆 ∈ Rng → 𝑆 ∈ Abel ) |
10 |
|
ablgrp |
⊢ ( 𝑆 ∈ Abel → 𝑆 ∈ Grp ) |
11 |
9 10
|
syl |
⊢ ( 𝑆 ∈ Rng → 𝑆 ∈ Grp ) |
12 |
11
|
adantr |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝑆 ∈ Grp ) |
13 |
|
ringgrp |
⊢ ( 𝑇 ∈ Ring → 𝑇 ∈ Grp ) |
14 |
4 13
|
syl |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Grp ) |
15 |
14
|
adantl |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝑇 ∈ Grp ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
17 |
1 16
|
0ringbas |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝐵 = { ( 0g ‘ 𝑇 ) } ) |
18 |
17
|
adantl |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐵 = { ( 0g ‘ 𝑇 ) } ) |
19 |
1 2 3 16
|
c0snghm |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ) |
20 |
12 15 18 19
|
syl3anc |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ) |
21 |
3
|
a1i |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) ) |
22 |
|
eqidd |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ 𝑥 = ( 0g ‘ 𝑇 ) ) → 0 = 0 ) |
23 |
1 16
|
ring0cl |
⊢ ( 𝑇 ∈ Ring → ( 0g ‘ 𝑇 ) ∈ 𝐵 ) |
24 |
4 23
|
syl |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( 0g ‘ 𝑇 ) ∈ 𝐵 ) |
25 |
24
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( 0g ‘ 𝑇 ) ∈ 𝐵 ) |
26 |
2
|
fvexi |
⊢ 0 ∈ V |
27 |
26
|
a1i |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → 0 ∈ V ) |
28 |
21 22 25 27
|
fvmptd |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
30 |
29 2
|
grpidcl |
⊢ ( 𝑆 ∈ Grp → 0 ∈ ( Base ‘ 𝑆 ) ) |
31 |
11 30
|
syl |
⊢ ( 𝑆 ∈ Rng → 0 ∈ ( Base ‘ 𝑆 ) ) |
32 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
33 |
29 32 2
|
rnglz |
⊢ ( ( 𝑆 ∈ Rng ∧ 0 ∈ ( Base ‘ 𝑆 ) ) → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
34 |
31 33
|
mpdan |
⊢ ( 𝑆 ∈ Rng → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
35 |
34
|
adantr |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
37 |
36
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
38 |
|
simpr |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
39 |
38 38
|
oveq12d |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) = ( 0 ( .r ‘ 𝑆 ) 0 ) ) |
40 |
|
eqid |
⊢ ( .r ‘ 𝑇 ) = ( .r ‘ 𝑇 ) |
41 |
1 40 16
|
ringlz |
⊢ ( ( 𝑇 ∈ Ring ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑇 ) ) |
42 |
4 23 41
|
syl2anc2 |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑇 ) ) |
43 |
42
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑇 ) ) |
44 |
43
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑇 ) ) |
45 |
44
|
fveq2d |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) |
46 |
45 38
|
eqtrd |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = 0 ) |
47 |
37 39 46
|
3eqtr4rd |
⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) |
48 |
28 47
|
mpdan |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) |
49 |
23 23
|
jca |
⊢ ( 𝑇 ∈ Ring → ( ( 0g ‘ 𝑇 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) ) |
50 |
4 49
|
syl |
⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( ( 0g ‘ 𝑇 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) ) |
51 |
50
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( ( 0g ‘ 𝑇 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) ) |
52 |
|
fvoveq1 |
⊢ ( 𝑎 = ( 0g ‘ 𝑇 ) → ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) ) ) |
53 |
|
fveq2 |
⊢ ( 𝑎 = ( 0g ‘ 𝑇 ) → ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) |
54 |
53
|
oveq1d |
⊢ ( 𝑎 = ( 0g ‘ 𝑇 ) → ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
55 |
52 54
|
eqeq12d |
⊢ ( 𝑎 = ( 0g ‘ 𝑇 ) → ( ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
56 |
|
oveq2 |
⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) = ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) |
57 |
56
|
fveq2d |
⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) ) = ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) ) |
58 |
|
fveq2 |
⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) |
59 |
58
|
oveq2d |
⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) |
60 |
57 59
|
eqeq12d |
⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) ) |
61 |
55 60
|
2ralsng |
⊢ ( ( ( 0g ‘ 𝑇 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) → ( ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) ) |
62 |
51 61
|
syl |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) ) |
63 |
48 62
|
mpbird |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
64 |
|
raleq |
⊢ ( 𝐵 = { ( 0g ‘ 𝑇 ) } → ( ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
65 |
64
|
raleqbi1dv |
⊢ ( 𝐵 = { ( 0g ‘ 𝑇 ) } → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
66 |
65
|
adantl |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
67 |
63 66
|
mpbird |
⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
68 |
18 67
|
mpdan |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
69 |
20 68
|
jca |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
70 |
1 40 32
|
isrnghm |
⊢ ( 𝐻 ∈ ( 𝑇 RngHomo 𝑆 ) ↔ ( ( 𝑇 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) ) |
71 |
8 69 70
|
sylanbrc |
⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑇 RngHomo 𝑆 ) ) |