Metamath Proof Explorer
Description: The base set of a zero ring, a ring which is not a nonzero ring, is the
singleton of the zero element. (Contributed by AV, 17-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
0ringdif.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
0ringdif.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
|
Assertion |
0ringbas |
⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) → 𝐵 = { 0 } ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
0ringdif.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
0ringdif.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
1 2
|
0ringdif |
⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) ↔ ( 𝑅 ∈ Ring ∧ 𝐵 = { 0 } ) ) |
4 |
3
|
simprbi |
⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) → 𝐵 = { 0 } ) |