Metamath Proof Explorer


Theorem 0ringbas

Description: The base set of a zero ring, a ring which is not a nonzero ring, is the singleton of the zero element. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses 0ringdif.b 𝐵 = ( Base ‘ 𝑅 )
0ringdif.0 0 = ( 0g𝑅 )
Assertion 0ringbas ( 𝑅 ∈ ( Ring ∖ NzRing ) → 𝐵 = { 0 } )

Proof

Step Hyp Ref Expression
1 0ringdif.b 𝐵 = ( Base ‘ 𝑅 )
2 0ringdif.0 0 = ( 0g𝑅 )
3 1 2 0ringdif ( 𝑅 ∈ ( Ring ∖ NzRing ) ↔ ( 𝑅 ∈ Ring ∧ 𝐵 = { 0 } ) )
4 3 simprbi ( 𝑅 ∈ ( Ring ∖ NzRing ) → 𝐵 = { 0 } )