Step |
Hyp |
Ref |
Expression |
1 |
|
0ringdif.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
0ringdif.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
eldif |
⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) ↔ ( 𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing ) ) |
4 |
1
|
a1i |
⊢ ( 𝑅 ∈ Ring → 𝐵 = ( Base ‘ 𝑅 ) ) |
5 |
4
|
fveqeq2d |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) = 1 ↔ ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ) ) |
6 |
1 2
|
0ring |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐵 = { 0 } ) |
7 |
6
|
ex |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) = 1 → 𝐵 = { 0 } ) ) |
8 |
|
fveq2 |
⊢ ( 𝐵 = { 0 } → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ { 0 } ) ) |
9 |
2
|
fvexi |
⊢ 0 ∈ V |
10 |
|
hashsng |
⊢ ( 0 ∈ V → ( ♯ ‘ { 0 } ) = 1 ) |
11 |
9 10
|
ax-mp |
⊢ ( ♯ ‘ { 0 } ) = 1 |
12 |
8 11
|
eqtrdi |
⊢ ( 𝐵 = { 0 } → ( ♯ ‘ 𝐵 ) = 1 ) |
13 |
7 12
|
impbid1 |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ 𝐵 ) = 1 ↔ 𝐵 = { 0 } ) ) |
14 |
|
0ringnnzr |
⊢ ( 𝑅 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑅 ) ) = 1 ↔ ¬ 𝑅 ∈ NzRing ) ) |
15 |
5 13 14
|
3bitr3rd |
⊢ ( 𝑅 ∈ Ring → ( ¬ 𝑅 ∈ NzRing ↔ 𝐵 = { 0 } ) ) |
16 |
15
|
pm5.32i |
⊢ ( ( 𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing ) ↔ ( 𝑅 ∈ Ring ∧ 𝐵 = { 0 } ) ) |
17 |
3 16
|
bitri |
⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) ↔ ( 𝑅 ∈ Ring ∧ 𝐵 = { 0 } ) ) |