Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Rings (extension)
Nonzero rings (extension)
0ringdif
Next ⟩
0ringbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
0ringdif
Description:
A zero ring is a ring which is not a nonzero ring.
(Contributed by
AV
, 17-Apr-2020)
Ref
Expression
Hypotheses
0ringdif.b
⊢
B
=
Base
R
0ringdif.0
⊢
0
˙
=
0
R
Assertion
0ringdif
⊢
R
∈
Ring
∖
NzRing
↔
R
∈
Ring
∧
B
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
0ringdif.b
⊢
B
=
Base
R
2
0ringdif.0
⊢
0
˙
=
0
R
3
eldif
⊢
R
∈
Ring
∖
NzRing
↔
R
∈
Ring
∧
¬
R
∈
NzRing
4
1
a1i
⊢
R
∈
Ring
→
B
=
Base
R
5
4
fveqeq2d
⊢
R
∈
Ring
→
B
=
1
↔
Base
R
=
1
6
1
2
0ring
⊢
R
∈
Ring
∧
B
=
1
→
B
=
0
˙
7
6
ex
⊢
R
∈
Ring
→
B
=
1
→
B
=
0
˙
8
fveq2
⊢
B
=
0
˙
→
B
=
0
˙
9
2
fvexi
⊢
0
˙
∈
V
10
hashsng
⊢
0
˙
∈
V
→
0
˙
=
1
11
9
10
ax-mp
⊢
0
˙
=
1
12
8
11
eqtrdi
⊢
B
=
0
˙
→
B
=
1
13
7
12
impbid1
⊢
R
∈
Ring
→
B
=
1
↔
B
=
0
˙
14
0ringnnzr
⊢
R
∈
Ring
→
Base
R
=
1
↔
¬
R
∈
NzRing
15
5
13
14
3bitr3rd
⊢
R
∈
Ring
→
¬
R
∈
NzRing
↔
B
=
0
˙
16
15
pm5.32i
⊢
R
∈
Ring
∧
¬
R
∈
NzRing
↔
R
∈
Ring
∧
B
=
0
˙
17
3
16
bitri
⊢
R
∈
Ring
∖
NzRing
↔
R
∈
Ring
∧
B
=
0
˙