Metamath Proof Explorer


Theorem 0ringdif

Description: A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses 0ringdif.b B = Base R
0ringdif.0 0 ˙ = 0 R
Assertion 0ringdif R Ring NzRing R Ring B = 0 ˙

Proof

Step Hyp Ref Expression
1 0ringdif.b B = Base R
2 0ringdif.0 0 ˙ = 0 R
3 eldif R Ring NzRing R Ring ¬ R NzRing
4 1 a1i R Ring B = Base R
5 4 fveqeq2d R Ring B = 1 Base R = 1
6 1 2 0ring R Ring B = 1 B = 0 ˙
7 6 ex R Ring B = 1 B = 0 ˙
8 fveq2 B = 0 ˙ B = 0 ˙
9 2 fvexi 0 ˙ V
10 hashsng 0 ˙ V 0 ˙ = 1
11 9 10 ax-mp 0 ˙ = 1
12 8 11 eqtrdi B = 0 ˙ B = 1
13 7 12 impbid1 R Ring B = 1 B = 0 ˙
14 0ringnnzr R Ring Base R = 1 ¬ R NzRing
15 5 13 14 3bitr3rd R Ring ¬ R NzRing B = 0 ˙
16 15 pm5.32i R Ring ¬ R NzRing R Ring B = 0 ˙
17 3 16 bitri R Ring NzRing R Ring B = 0 ˙