Step |
Hyp |
Ref |
Expression |
1 |
|
0ringdif.b |
|- B = ( Base ` R ) |
2 |
|
0ringdif.0 |
|- .0. = ( 0g ` R ) |
3 |
|
eldif |
|- ( R e. ( Ring \ NzRing ) <-> ( R e. Ring /\ -. R e. NzRing ) ) |
4 |
1
|
a1i |
|- ( R e. Ring -> B = ( Base ` R ) ) |
5 |
4
|
fveqeq2d |
|- ( R e. Ring -> ( ( # ` B ) = 1 <-> ( # ` ( Base ` R ) ) = 1 ) ) |
6 |
1 2
|
0ring |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> B = { .0. } ) |
7 |
6
|
ex |
|- ( R e. Ring -> ( ( # ` B ) = 1 -> B = { .0. } ) ) |
8 |
|
fveq2 |
|- ( B = { .0. } -> ( # ` B ) = ( # ` { .0. } ) ) |
9 |
2
|
fvexi |
|- .0. e. _V |
10 |
|
hashsng |
|- ( .0. e. _V -> ( # ` { .0. } ) = 1 ) |
11 |
9 10
|
ax-mp |
|- ( # ` { .0. } ) = 1 |
12 |
8 11
|
eqtrdi |
|- ( B = { .0. } -> ( # ` B ) = 1 ) |
13 |
7 12
|
impbid1 |
|- ( R e. Ring -> ( ( # ` B ) = 1 <-> B = { .0. } ) ) |
14 |
|
0ringnnzr |
|- ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 <-> -. R e. NzRing ) ) |
15 |
5 13 14
|
3bitr3rd |
|- ( R e. Ring -> ( -. R e. NzRing <-> B = { .0. } ) ) |
16 |
15
|
pm5.32i |
|- ( ( R e. Ring /\ -. R e. NzRing ) <-> ( R e. Ring /\ B = { .0. } ) ) |
17 |
3 16
|
bitri |
|- ( R e. ( Ring \ NzRing ) <-> ( R e. Ring /\ B = { .0. } ) ) |