Metamath Proof Explorer
Description: The base set of a zero ring, a ring which is not a nonzero ring, is the
singleton of the zero element. (Contributed by AV, 17-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
0ring.b |
|
|
|
0ring.0 |
|
|
Assertion |
0ringbas |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ring.b |
|
| 2 |
|
0ring.0 |
|
| 3 |
1 2
|
0ringdif |
|
| 4 |
3
|
simprbi |
|