Metamath Proof Explorer


Theorem 0ringbas

Description: The base set of a zero ring, a ring which is not a nonzero ring, is the singleton of the zero element. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses 0ringdif.b B = Base R
0ringdif.0 0 ˙ = 0 R
Assertion 0ringbas R Ring NzRing B = 0 ˙

Proof

Step Hyp Ref Expression
1 0ringdif.b B = Base R
2 0ringdif.0 0 ˙ = 0 R
3 1 2 0ringdif R Ring NzRing R Ring B = 0 ˙
4 3 simprbi R Ring NzRing B = 0 ˙