Step |
Hyp |
Ref |
Expression |
1 |
|
zrrhm.b |
|
2 |
|
zrrhm.0 |
|
3 |
|
zrrhm.h |
|
4 |
|
eldifi |
|
5 |
|
ringrng |
|
6 |
4 5
|
syl |
|
7 |
6
|
anim1i |
|
8 |
7
|
ancoms |
|
9 |
|
rngabl |
|
10 |
|
ablgrp |
|
11 |
9 10
|
syl |
|
12 |
11
|
adantr |
|
13 |
|
ringgrp |
|
14 |
4 13
|
syl |
|
15 |
14
|
adantl |
|
16 |
|
eqid |
|
17 |
1 16
|
0ringbas |
|
18 |
17
|
adantl |
|
19 |
1 2 3 16
|
c0snghm |
|
20 |
12 15 18 19
|
syl3anc |
|
21 |
3
|
a1i |
|
22 |
|
eqidd |
|
23 |
1 16
|
ring0cl |
|
24 |
4 23
|
syl |
|
25 |
24
|
ad2antlr |
|
26 |
2
|
fvexi |
|
27 |
26
|
a1i |
|
28 |
21 22 25 27
|
fvmptd |
|
29 |
|
eqid |
|
30 |
29 2
|
grpidcl |
|
31 |
11 30
|
syl |
|
32 |
|
eqid |
|
33 |
29 32 2
|
rnglz |
|
34 |
31 33
|
mpdan |
|
35 |
34
|
adantr |
|
36 |
35
|
adantr |
|
37 |
36
|
adantr |
|
38 |
|
simpr |
|
39 |
38 38
|
oveq12d |
|
40 |
|
eqid |
|
41 |
1 40 16
|
ringlz |
|
42 |
4 23 41
|
syl2anc2 |
|
43 |
42
|
ad2antlr |
|
44 |
43
|
adantr |
|
45 |
44
|
fveq2d |
|
46 |
45 38
|
eqtrd |
|
47 |
37 39 46
|
3eqtr4rd |
|
48 |
28 47
|
mpdan |
|
49 |
23 23
|
jca |
|
50 |
4 49
|
syl |
|
51 |
50
|
ad2antlr |
|
52 |
|
fvoveq1 |
|
53 |
|
fveq2 |
|
54 |
53
|
oveq1d |
|
55 |
52 54
|
eqeq12d |
|
56 |
|
oveq2 |
|
57 |
56
|
fveq2d |
|
58 |
|
fveq2 |
|
59 |
58
|
oveq2d |
|
60 |
57 59
|
eqeq12d |
|
61 |
55 60
|
2ralsng |
|
62 |
51 61
|
syl |
|
63 |
48 62
|
mpbird |
|
64 |
|
raleq |
|
65 |
64
|
raleqbi1dv |
|
66 |
65
|
adantl |
|
67 |
63 66
|
mpbird |
|
68 |
18 67
|
mpdan |
|
69 |
20 68
|
jca |
|
70 |
1 40 32
|
isrnghm |
|
71 |
8 69 70
|
sylanbrc |
|