Metamath Proof Explorer


Theorem zrrnghm

Description: The constant mapping to zero is a nonunital ring homomorphism from the zero ring to any nonunital ring. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses zrrhm.b B = Base T
zrrhm.0 0 ˙ = 0 S
zrrhm.h H = x B 0 ˙
Assertion zrrnghm S Rng T Ring NzRing H T RngHomo S

Proof

Step Hyp Ref Expression
1 zrrhm.b B = Base T
2 zrrhm.0 0 ˙ = 0 S
3 zrrhm.h H = x B 0 ˙
4 eldifi T Ring NzRing T Ring
5 ringrng T Ring T Rng
6 4 5 syl T Ring NzRing T Rng
7 6 anim1i T Ring NzRing S Rng T Rng S Rng
8 7 ancoms S Rng T Ring NzRing T Rng S Rng
9 rngabl S Rng S Abel
10 ablgrp S Abel S Grp
11 9 10 syl S Rng S Grp
12 11 adantr S Rng T Ring NzRing S Grp
13 ringgrp T Ring T Grp
14 4 13 syl T Ring NzRing T Grp
15 14 adantl S Rng T Ring NzRing T Grp
16 eqid 0 T = 0 T
17 1 16 0ringbas T Ring NzRing B = 0 T
18 17 adantl S Rng T Ring NzRing B = 0 T
19 1 2 3 16 c0snghm S Grp T Grp B = 0 T H T GrpHom S
20 12 15 18 19 syl3anc S Rng T Ring NzRing H T GrpHom S
21 3 a1i S Rng T Ring NzRing B = 0 T H = x B 0 ˙
22 eqidd S Rng T Ring NzRing B = 0 T x = 0 T 0 ˙ = 0 ˙
23 1 16 ring0cl T Ring 0 T B
24 4 23 syl T Ring NzRing 0 T B
25 24 ad2antlr S Rng T Ring NzRing B = 0 T 0 T B
26 2 fvexi 0 ˙ V
27 26 a1i S Rng T Ring NzRing B = 0 T 0 ˙ V
28 21 22 25 27 fvmptd S Rng T Ring NzRing B = 0 T H 0 T = 0 ˙
29 eqid Base S = Base S
30 29 2 grpidcl S Grp 0 ˙ Base S
31 11 30 syl S Rng 0 ˙ Base S
32 eqid S = S
33 29 32 2 rnglz S Rng 0 ˙ Base S 0 ˙ S 0 ˙ = 0 ˙
34 31 33 mpdan S Rng 0 ˙ S 0 ˙ = 0 ˙
35 34 adantr S Rng T Ring NzRing 0 ˙ S 0 ˙ = 0 ˙
36 35 adantr S Rng T Ring NzRing B = 0 T 0 ˙ S 0 ˙ = 0 ˙
37 36 adantr S Rng T Ring NzRing B = 0 T H 0 T = 0 ˙ 0 ˙ S 0 ˙ = 0 ˙
38 simpr S Rng T Ring NzRing B = 0 T H 0 T = 0 ˙ H 0 T = 0 ˙
39 38 38 oveq12d S Rng T Ring NzRing B = 0 T H 0 T = 0 ˙ H 0 T S H 0 T = 0 ˙ S 0 ˙
40 eqid T = T
41 1 40 16 ringlz T Ring 0 T B 0 T T 0 T = 0 T
42 4 23 41 syl2anc2 T Ring NzRing 0 T T 0 T = 0 T
43 42 ad2antlr S Rng T Ring NzRing B = 0 T 0 T T 0 T = 0 T
44 43 adantr S Rng T Ring NzRing B = 0 T H 0 T = 0 ˙ 0 T T 0 T = 0 T
45 44 fveq2d S Rng T Ring NzRing B = 0 T H 0 T = 0 ˙ H 0 T T 0 T = H 0 T
46 45 38 eqtrd S Rng T Ring NzRing B = 0 T H 0 T = 0 ˙ H 0 T T 0 T = 0 ˙
47 37 39 46 3eqtr4rd S Rng T Ring NzRing B = 0 T H 0 T = 0 ˙ H 0 T T 0 T = H 0 T S H 0 T
48 28 47 mpdan S Rng T Ring NzRing B = 0 T H 0 T T 0 T = H 0 T S H 0 T
49 23 23 jca T Ring 0 T B 0 T B
50 4 49 syl T Ring NzRing 0 T B 0 T B
51 50 ad2antlr S Rng T Ring NzRing B = 0 T 0 T B 0 T B
52 fvoveq1 a = 0 T H a T c = H 0 T T c
53 fveq2 a = 0 T H a = H 0 T
54 53 oveq1d a = 0 T H a S H c = H 0 T S H c
55 52 54 eqeq12d a = 0 T H a T c = H a S H c H 0 T T c = H 0 T S H c
56 oveq2 c = 0 T 0 T T c = 0 T T 0 T
57 56 fveq2d c = 0 T H 0 T T c = H 0 T T 0 T
58 fveq2 c = 0 T H c = H 0 T
59 58 oveq2d c = 0 T H 0 T S H c = H 0 T S H 0 T
60 57 59 eqeq12d c = 0 T H 0 T T c = H 0 T S H c H 0 T T 0 T = H 0 T S H 0 T
61 55 60 2ralsng 0 T B 0 T B a 0 T c 0 T H a T c = H a S H c H 0 T T 0 T = H 0 T S H 0 T
62 51 61 syl S Rng T Ring NzRing B = 0 T a 0 T c 0 T H a T c = H a S H c H 0 T T 0 T = H 0 T S H 0 T
63 48 62 mpbird S Rng T Ring NzRing B = 0 T a 0 T c 0 T H a T c = H a S H c
64 raleq B = 0 T c B H a T c = H a S H c c 0 T H a T c = H a S H c
65 64 raleqbi1dv B = 0 T a B c B H a T c = H a S H c a 0 T c 0 T H a T c = H a S H c
66 65 adantl S Rng T Ring NzRing B = 0 T a B c B H a T c = H a S H c a 0 T c 0 T H a T c = H a S H c
67 63 66 mpbird S Rng T Ring NzRing B = 0 T a B c B H a T c = H a S H c
68 18 67 mpdan S Rng T Ring NzRing a B c B H a T c = H a S H c
69 20 68 jca S Rng T Ring NzRing H T GrpHom S a B c B H a T c = H a S H c
70 1 40 32 isrnghm H T RngHomo S T Rng S Rng H T GrpHom S a B c B H a T c = H a S H c
71 8 69 70 sylanbrc S Rng T Ring NzRing H T RngHomo S