Metamath Proof Explorer


Theorem c0snghm

Description: The constant mapping to zero is a group homomorphism from the trivial group (consisting of the zero only) to any group. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses zrrhm.b B=BaseT
zrrhm.0 0˙=0S
zrrhm.h H=xB0˙
c0snmhm.z Z=0T
Assertion c0snghm SGrpTGrpB=ZHTGrpHomS

Proof

Step Hyp Ref Expression
1 zrrhm.b B=BaseT
2 zrrhm.0 0˙=0S
3 zrrhm.h H=xB0˙
4 c0snmhm.z Z=0T
5 grpmnd SGrpSMnd
6 grpmnd TGrpTMnd
7 id B=ZB=Z
8 1 2 3 4 c0snmhm SMndTMndB=ZHTMndHomS
9 5 6 7 8 syl3an SGrpTGrpB=ZHTMndHomS
10 ghmmhmb TGrpSGrpTGrpHomS=TMndHomS
11 10 eleq2d TGrpSGrpHTGrpHomSHTMndHomS
12 11 ancoms SGrpTGrpHTGrpHomSHTMndHomS
13 12 3adant3 SGrpTGrpB=ZHTGrpHomSHTMndHomS
14 9 13 mpbird SGrpTGrpB=ZHTGrpHomS