Metamath Proof Explorer


Theorem ghmmhmb

Description: Group homomorphisms and monoid homomorphisms coincide. (Thus, GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Assertion ghmmhmb SGrpTGrpSGrpHomT=SMndHomT

Proof

Step Hyp Ref Expression
1 ghmmhm fSGrpHomTfSMndHomT
2 eqid BaseS=BaseS
3 eqid BaseT=BaseT
4 eqid +S=+S
5 eqid +T=+T
6 simpll SGrpTGrpfSMndHomTSGrp
7 simplr SGrpTGrpfSMndHomTTGrp
8 2 3 mhmf fSMndHomTf:BaseSBaseT
9 8 adantl SGrpTGrpfSMndHomTf:BaseSBaseT
10 2 4 5 mhmlin fSMndHomTxBaseSyBaseSfx+Sy=fx+Tfy
11 10 3expb fSMndHomTxBaseSyBaseSfx+Sy=fx+Tfy
12 11 adantll SGrpTGrpfSMndHomTxBaseSyBaseSfx+Sy=fx+Tfy
13 2 3 4 5 6 7 9 12 isghmd SGrpTGrpfSMndHomTfSGrpHomT
14 13 ex SGrpTGrpfSMndHomTfSGrpHomT
15 1 14 impbid2 SGrpTGrpfSGrpHomTfSMndHomT
16 15 eqrdv SGrpTGrpSGrpHomT=SMndHomT