Step |
Hyp |
Ref |
Expression |
1 |
|
c0mhm.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
2 |
|
c0mhm.0 |
⊢ 0 = ( 0g ‘ 𝑇 ) |
3 |
|
c0mhm.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) |
4 |
|
grpmnd |
⊢ ( 𝑆 ∈ Grp → 𝑆 ∈ Mnd ) |
5 |
|
grpmnd |
⊢ ( 𝑇 ∈ Grp → 𝑇 ∈ Mnd ) |
6 |
4 5
|
anim12i |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ) |
7 |
1 2 3
|
c0mhm |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → 𝐻 ∈ ( 𝑆 MndHom 𝑇 ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → 𝐻 ∈ ( 𝑆 MndHom 𝑇 ) ) |
9 |
|
ghmmhmb |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑆 GrpHom 𝑇 ) = ( 𝑆 MndHom 𝑇 ) ) |
10 |
9
|
eleq2d |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐻 ∈ ( 𝑆 MndHom 𝑇 ) ) ) |
11 |
8 10
|
mpbird |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → 𝐻 ∈ ( 𝑆 GrpHom 𝑇 ) ) |