Metamath Proof Explorer


Theorem c0ghm

Description: The constant mapping to zero is a group homomorphism. (Contributed by AV, 16-Apr-2020)

Ref Expression
Hypotheses c0mhm.b B = Base S
c0mhm.0 0 ˙ = 0 T
c0mhm.h H = x B 0 ˙
Assertion c0ghm S Grp T Grp H S GrpHom T

Proof

Step Hyp Ref Expression
1 c0mhm.b B = Base S
2 c0mhm.0 0 ˙ = 0 T
3 c0mhm.h H = x B 0 ˙
4 grpmnd S Grp S Mnd
5 grpmnd T Grp T Mnd
6 4 5 anim12i S Grp T Grp S Mnd T Mnd
7 1 2 3 c0mhm S Mnd T Mnd H S MndHom T
8 6 7 syl S Grp T Grp H S MndHom T
9 ghmmhmb S Grp T Grp S GrpHom T = S MndHom T
10 9 eleq2d S Grp T Grp H S GrpHom T H S MndHom T
11 8 10 mpbird S Grp T Grp H S GrpHom T