Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Rings (extension)
Rng homomorphisms
c0ghm
Next ⟩
c0rhm
Metamath Proof Explorer
Ascii
Unicode
Theorem
c0ghm
Description:
The constant mapping to zero is a group homomorphism.
(Contributed by
AV
, 16-Apr-2020)
Ref
Expression
Hypotheses
c0mhm.b
⊢
B
=
Base
S
c0mhm.0
⊢
0
˙
=
0
T
c0mhm.h
⊢
H
=
x
∈
B
⟼
0
˙
Assertion
c0ghm
⊢
S
∈
Grp
∧
T
∈
Grp
→
H
∈
S
GrpHom
T
Proof
Step
Hyp
Ref
Expression
1
c0mhm.b
⊢
B
=
Base
S
2
c0mhm.0
⊢
0
˙
=
0
T
3
c0mhm.h
⊢
H
=
x
∈
B
⟼
0
˙
4
grpmnd
⊢
S
∈
Grp
→
S
∈
Mnd
5
grpmnd
⊢
T
∈
Grp
→
T
∈
Mnd
6
4
5
anim12i
⊢
S
∈
Grp
∧
T
∈
Grp
→
S
∈
Mnd
∧
T
∈
Mnd
7
1
2
3
c0mhm
⊢
S
∈
Mnd
∧
T
∈
Mnd
→
H
∈
S
MndHom
T
8
6
7
syl
⊢
S
∈
Grp
∧
T
∈
Grp
→
H
∈
S
MndHom
T
9
ghmmhmb
⊢
S
∈
Grp
∧
T
∈
Grp
→
S
GrpHom
T
=
S
MndHom
T
10
9
eleq2d
⊢
S
∈
Grp
∧
T
∈
Grp
→
H
∈
S
GrpHom
T
↔
H
∈
S
MndHom
T
11
8
10
mpbird
⊢
S
∈
Grp
∧
T
∈
Grp
→
H
∈
S
GrpHom
T