Step |
Hyp |
Ref |
Expression |
1 |
|
c0mhm.b |
|
2 |
|
c0mhm.0 |
|
3 |
|
c0mhm.h |
|
4 |
|
eqid |
|
5 |
4 2
|
mndidcl |
|
6 |
5
|
adantl |
|
7 |
6
|
adantr |
|
8 |
7 3
|
fmptd |
|
9 |
5
|
ancli |
|
10 |
9
|
adantl |
|
11 |
|
eqid |
|
12 |
4 11 2
|
mndlid |
|
13 |
10 12
|
syl |
|
14 |
13
|
adantr |
|
15 |
3
|
a1i |
|
16 |
|
eqidd |
|
17 |
|
simprl |
|
18 |
6
|
adantr |
|
19 |
15 16 17 18
|
fvmptd |
|
20 |
|
eqidd |
|
21 |
|
simprr |
|
22 |
15 20 21 18
|
fvmptd |
|
23 |
19 22
|
oveq12d |
|
24 |
|
eqidd |
|
25 |
|
eqid |
|
26 |
1 25
|
mndcl |
|
27 |
26
|
3expb |
|
28 |
27
|
adantlr |
|
29 |
15 24 28 18
|
fvmptd |
|
30 |
14 23 29
|
3eqtr4rd |
|
31 |
30
|
ralrimivva |
|
32 |
3
|
a1i |
|
33 |
|
eqidd |
|
34 |
|
eqid |
|
35 |
1 34
|
mndidcl |
|
36 |
35
|
adantr |
|
37 |
32 33 36 6
|
fvmptd |
|
38 |
8 31 37
|
3jca |
|
39 |
38
|
ancli |
|
40 |
1 4 25 11 34 2
|
ismhm |
|
41 |
39 40
|
sylibr |
|