Metamath Proof Explorer


Theorem c0mhm

Description: The constant mapping to zero is a monoid homomorphism. (Contributed by AV, 16-Apr-2020)

Ref Expression
Hypotheses c0mhm.b B = Base S
c0mhm.0 0 ˙ = 0 T
c0mhm.h H = x B 0 ˙
Assertion c0mhm S Mnd T Mnd H S MndHom T

Proof

Step Hyp Ref Expression
1 c0mhm.b B = Base S
2 c0mhm.0 0 ˙ = 0 T
3 c0mhm.h H = x B 0 ˙
4 eqid Base T = Base T
5 4 2 mndidcl T Mnd 0 ˙ Base T
6 5 adantl S Mnd T Mnd 0 ˙ Base T
7 6 adantr S Mnd T Mnd x B 0 ˙ Base T
8 7 3 fmptd S Mnd T Mnd H : B Base T
9 5 ancli T Mnd T Mnd 0 ˙ Base T
10 9 adantl S Mnd T Mnd T Mnd 0 ˙ Base T
11 eqid + T = + T
12 4 11 2 mndlid T Mnd 0 ˙ Base T 0 ˙ + T 0 ˙ = 0 ˙
13 10 12 syl S Mnd T Mnd 0 ˙ + T 0 ˙ = 0 ˙
14 13 adantr S Mnd T Mnd a B b B 0 ˙ + T 0 ˙ = 0 ˙
15 3 a1i S Mnd T Mnd a B b B H = x B 0 ˙
16 eqidd S Mnd T Mnd a B b B x = a 0 ˙ = 0 ˙
17 simprl S Mnd T Mnd a B b B a B
18 6 adantr S Mnd T Mnd a B b B 0 ˙ Base T
19 15 16 17 18 fvmptd S Mnd T Mnd a B b B H a = 0 ˙
20 eqidd S Mnd T Mnd a B b B x = b 0 ˙ = 0 ˙
21 simprr S Mnd T Mnd a B b B b B
22 15 20 21 18 fvmptd S Mnd T Mnd a B b B H b = 0 ˙
23 19 22 oveq12d S Mnd T Mnd a B b B H a + T H b = 0 ˙ + T 0 ˙
24 eqidd S Mnd T Mnd a B b B x = a + S b 0 ˙ = 0 ˙
25 eqid + S = + S
26 1 25 mndcl S Mnd a B b B a + S b B
27 26 3expb S Mnd a B b B a + S b B
28 27 adantlr S Mnd T Mnd a B b B a + S b B
29 15 24 28 18 fvmptd S Mnd T Mnd a B b B H a + S b = 0 ˙
30 14 23 29 3eqtr4rd S Mnd T Mnd a B b B H a + S b = H a + T H b
31 30 ralrimivva S Mnd T Mnd a B b B H a + S b = H a + T H b
32 3 a1i S Mnd T Mnd H = x B 0 ˙
33 eqidd S Mnd T Mnd x = 0 S 0 ˙ = 0 ˙
34 eqid 0 S = 0 S
35 1 34 mndidcl S Mnd 0 S B
36 35 adantr S Mnd T Mnd 0 S B
37 32 33 36 6 fvmptd S Mnd T Mnd H 0 S = 0 ˙
38 8 31 37 3jca S Mnd T Mnd H : B Base T a B b B H a + S b = H a + T H b H 0 S = 0 ˙
39 38 ancli S Mnd T Mnd S Mnd T Mnd H : B Base T a B b B H a + S b = H a + T H b H 0 S = 0 ˙
40 1 4 25 11 34 2 ismhm H S MndHom T S Mnd T Mnd H : B Base T a B b B H a + S b = H a + T H b H 0 S = 0 ˙
41 39 40 sylibr S Mnd T Mnd H S MndHom T