Metamath Proof Explorer


Theorem c0mhm

Description: The constant mapping to zero is a monoid homomorphism. (Contributed by AV, 16-Apr-2020)

Ref Expression
Hypotheses c0mhm.b B=BaseS
c0mhm.0 0˙=0T
c0mhm.h H=xB0˙
Assertion c0mhm SMndTMndHSMndHomT

Proof

Step Hyp Ref Expression
1 c0mhm.b B=BaseS
2 c0mhm.0 0˙=0T
3 c0mhm.h H=xB0˙
4 eqid BaseT=BaseT
5 4 2 mndidcl TMnd0˙BaseT
6 5 adantl SMndTMnd0˙BaseT
7 6 adantr SMndTMndxB0˙BaseT
8 7 3 fmptd SMndTMndH:BBaseT
9 5 ancli TMndTMnd0˙BaseT
10 9 adantl SMndTMndTMnd0˙BaseT
11 eqid +T=+T
12 4 11 2 mndlid TMnd0˙BaseT0˙+T0˙=0˙
13 10 12 syl SMndTMnd0˙+T0˙=0˙
14 13 adantr SMndTMndaBbB0˙+T0˙=0˙
15 3 a1i SMndTMndaBbBH=xB0˙
16 eqidd SMndTMndaBbBx=a0˙=0˙
17 simprl SMndTMndaBbBaB
18 6 adantr SMndTMndaBbB0˙BaseT
19 15 16 17 18 fvmptd SMndTMndaBbBHa=0˙
20 eqidd SMndTMndaBbBx=b0˙=0˙
21 simprr SMndTMndaBbBbB
22 15 20 21 18 fvmptd SMndTMndaBbBHb=0˙
23 19 22 oveq12d SMndTMndaBbBHa+THb=0˙+T0˙
24 eqidd SMndTMndaBbBx=a+Sb0˙=0˙
25 eqid +S=+S
26 1 25 mndcl SMndaBbBa+SbB
27 26 3expb SMndaBbBa+SbB
28 27 adantlr SMndTMndaBbBa+SbB
29 15 24 28 18 fvmptd SMndTMndaBbBHa+Sb=0˙
30 14 23 29 3eqtr4rd SMndTMndaBbBHa+Sb=Ha+THb
31 30 ralrimivva SMndTMndaBbBHa+Sb=Ha+THb
32 3 a1i SMndTMndH=xB0˙
33 eqidd SMndTMndx=0S0˙=0˙
34 eqid 0S=0S
35 1 34 mndidcl SMnd0SB
36 35 adantr SMndTMnd0SB
37 32 33 36 6 fvmptd SMndTMndH0S=0˙
38 8 31 37 3jca SMndTMndH:BBaseTaBbBHa+Sb=Ha+THbH0S=0˙
39 38 ancli SMndTMndSMndTMndH:BBaseTaBbBHa+Sb=Ha+THbH0S=0˙
40 1 4 25 11 34 2 ismhm HSMndHomTSMndTMndH:BBaseTaBbBHa+Sb=Ha+THbH0S=0˙
41 39 40 sylibr SMndTMndHSMndHomT