Description: The constant mapping to zero is a monoid homomorphism. (Contributed by AV, 16-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | c0mhm.b | |
|
c0mhm.0 | |
||
c0mhm.h | |
||
Assertion | c0mhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0mhm.b | |
|
2 | c0mhm.0 | |
|
3 | c0mhm.h | |
|
4 | eqid | |
|
5 | 4 2 | mndidcl | |
6 | 5 | adantl | |
7 | 6 | adantr | |
8 | 7 3 | fmptd | |
9 | 5 | ancli | |
10 | 9 | adantl | |
11 | eqid | |
|
12 | 4 11 2 | mndlid | |
13 | 10 12 | syl | |
14 | 13 | adantr | |
15 | 3 | a1i | |
16 | eqidd | |
|
17 | simprl | |
|
18 | 6 | adantr | |
19 | 15 16 17 18 | fvmptd | |
20 | eqidd | |
|
21 | simprr | |
|
22 | 15 20 21 18 | fvmptd | |
23 | 19 22 | oveq12d | |
24 | eqidd | |
|
25 | eqid | |
|
26 | 1 25 | mndcl | |
27 | 26 | 3expb | |
28 | 27 | adantlr | |
29 | 15 24 28 18 | fvmptd | |
30 | 14 23 29 | 3eqtr4rd | |
31 | 30 | ralrimivva | |
32 | 3 | a1i | |
33 | eqidd | |
|
34 | eqid | |
|
35 | 1 34 | mndidcl | |
36 | 35 | adantr | |
37 | 32 33 36 6 | fvmptd | |
38 | 8 31 37 | 3jca | |
39 | 38 | ancli | |
40 | 1 4 25 11 34 2 | ismhm | |
41 | 39 40 | sylibr | |