| Step |
Hyp |
Ref |
Expression |
| 1 |
|
c0mhm.b |
|
| 2 |
|
c0mhm.0 |
|
| 3 |
|
c0mhm.h |
|
| 4 |
|
eqid |
|
| 5 |
4 2
|
mndidcl |
|
| 6 |
5
|
adantl |
|
| 7 |
6
|
adantr |
|
| 8 |
7 3
|
fmptd |
|
| 9 |
5
|
ancli |
|
| 10 |
9
|
adantl |
|
| 11 |
|
eqid |
|
| 12 |
4 11 2
|
mndlid |
|
| 13 |
10 12
|
syl |
|
| 14 |
13
|
adantr |
|
| 15 |
3
|
a1i |
|
| 16 |
|
eqidd |
|
| 17 |
|
simprl |
|
| 18 |
6
|
adantr |
|
| 19 |
15 16 17 18
|
fvmptd |
|
| 20 |
|
eqidd |
|
| 21 |
|
simprr |
|
| 22 |
15 20 21 18
|
fvmptd |
|
| 23 |
19 22
|
oveq12d |
|
| 24 |
|
eqidd |
|
| 25 |
|
eqid |
|
| 26 |
1 25
|
mndcl |
|
| 27 |
26
|
3expb |
|
| 28 |
27
|
adantlr |
|
| 29 |
15 24 28 18
|
fvmptd |
|
| 30 |
14 23 29
|
3eqtr4rd |
|
| 31 |
30
|
ralrimivva |
|
| 32 |
3
|
a1i |
|
| 33 |
|
eqidd |
|
| 34 |
|
eqid |
|
| 35 |
1 34
|
mndidcl |
|
| 36 |
35
|
adantr |
|
| 37 |
32 33 36 6
|
fvmptd |
|
| 38 |
8 31 37
|
3jca |
|
| 39 |
38
|
ancli |
|
| 40 |
1 4 25 11 34 2
|
ismhm |
|
| 41 |
39 40
|
sylibr |
|