Metamath Proof Explorer


Theorem c0rhm

Description: The constant mapping to zero is a ring homomorphism from any ring to the zero ring. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses c0mhm.b B = Base S
c0mhm.0 0 ˙ = 0 T
c0mhm.h H = x B 0 ˙
Assertion c0rhm S Ring T Ring NzRing H S RingHom T

Proof

Step Hyp Ref Expression
1 c0mhm.b B = Base S
2 c0mhm.0 0 ˙ = 0 T
3 c0mhm.h H = x B 0 ˙
4 eldifi T Ring NzRing T Ring
5 4 anim2i S Ring T Ring NzRing S Ring T Ring
6 ringgrp S Ring S Grp
7 ringgrp T Ring T Grp
8 4 7 syl T Ring NzRing T Grp
9 1 2 3 c0ghm S Grp T Grp H S GrpHom T
10 6 8 9 syl2an S Ring T Ring NzRing H S GrpHom T
11 eqid Base T = Base T
12 eqid 1 T = 1 T
13 11 2 12 0ring1eq0 T Ring NzRing 1 T = 0 ˙
14 13 eqcomd T Ring NzRing 0 ˙ = 1 T
15 14 mpteq2dv T Ring NzRing x B 0 ˙ = x B 1 T
16 15 adantl S Ring T Ring NzRing x B 0 ˙ = x B 1 T
17 3 16 syl5eq S Ring T Ring NzRing H = x B 1 T
18 eqid mulGrp S = mulGrp S
19 18 ringmgp S Ring mulGrp S Mnd
20 eqid mulGrp T = mulGrp T
21 20 ringmgp T Ring mulGrp T Mnd
22 4 21 syl T Ring NzRing mulGrp T Mnd
23 18 1 mgpbas B = Base mulGrp S
24 20 12 ringidval 1 T = 0 mulGrp T
25 eqid x B 1 T = x B 1 T
26 23 24 25 c0mhm mulGrp S Mnd mulGrp T Mnd x B 1 T mulGrp S MndHom mulGrp T
27 19 22 26 syl2an S Ring T Ring NzRing x B 1 T mulGrp S MndHom mulGrp T
28 17 27 eqeltrd S Ring T Ring NzRing H mulGrp S MndHom mulGrp T
29 10 28 jca S Ring T Ring NzRing H S GrpHom T H mulGrp S MndHom mulGrp T
30 18 20 isrhm H S RingHom T S Ring T Ring H S GrpHom T H mulGrp S MndHom mulGrp T
31 5 29 30 sylanbrc S Ring T Ring NzRing H S RingHom T