Description: The constant mapping to zero is a ring homomorphism from any ring to the zero ring. (Contributed by AV, 17-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | c0rhm.b | |
|
c0rhm.0 | |
||
c0rhm.h | |
||
Assertion | c0rhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0rhm.b | |
|
2 | c0rhm.0 | |
|
3 | c0rhm.h | |
|
4 | eldifi | |
|
5 | 4 | anim2i | |
6 | ringgrp | |
|
7 | ringgrp | |
|
8 | 4 7 | syl | |
9 | 1 2 3 | c0ghm | |
10 | 6 8 9 | syl2an | |
11 | eqid | |
|
12 | eqid | |
|
13 | 11 2 12 | 0ring1eq0 | |
14 | 13 | eqcomd | |
15 | 14 | mpteq2dv | |
16 | 15 | adantl | |
17 | 3 16 | eqtrid | |
18 | eqid | |
|
19 | 18 | ringmgp | |
20 | eqid | |
|
21 | 20 | ringmgp | |
22 | 4 21 | syl | |
23 | 18 1 | mgpbas | |
24 | 20 12 | ringidval | |
25 | eqid | |
|
26 | 23 24 25 | c0mhm | |
27 | 19 22 26 | syl2an | |
28 | 17 27 | eqeltrd | |
29 | 10 28 | jca | |
30 | 18 20 | isrhm | |
31 | 5 29 30 | sylanbrc | |