Metamath Proof Explorer


Theorem c0rhm

Description: The constant mapping to zero is a ring homomorphism from any ring to the zero ring. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses c0rhm.b B=BaseS
c0rhm.0 0˙=0T
c0rhm.h H=xB0˙
Assertion c0rhm SRingTRingNzRingHSRingHomT

Proof

Step Hyp Ref Expression
1 c0rhm.b B=BaseS
2 c0rhm.0 0˙=0T
3 c0rhm.h H=xB0˙
4 eldifi TRingNzRingTRing
5 4 anim2i SRingTRingNzRingSRingTRing
6 ringgrp SRingSGrp
7 ringgrp TRingTGrp
8 4 7 syl TRingNzRingTGrp
9 1 2 3 c0ghm SGrpTGrpHSGrpHomT
10 6 8 9 syl2an SRingTRingNzRingHSGrpHomT
11 eqid BaseT=BaseT
12 eqid 1T=1T
13 11 2 12 0ring1eq0 TRingNzRing1T=0˙
14 13 eqcomd TRingNzRing0˙=1T
15 14 mpteq2dv TRingNzRingxB0˙=xB1T
16 15 adantl SRingTRingNzRingxB0˙=xB1T
17 3 16 eqtrid SRingTRingNzRingH=xB1T
18 eqid mulGrpS=mulGrpS
19 18 ringmgp SRingmulGrpSMnd
20 eqid mulGrpT=mulGrpT
21 20 ringmgp TRingmulGrpTMnd
22 4 21 syl TRingNzRingmulGrpTMnd
23 18 1 mgpbas B=BasemulGrpS
24 20 12 ringidval 1T=0mulGrpT
25 eqid xB1T=xB1T
26 23 24 25 c0mhm mulGrpSMndmulGrpTMndxB1TmulGrpSMndHommulGrpT
27 19 22 26 syl2an SRingTRingNzRingxB1TmulGrpSMndHommulGrpT
28 17 27 eqeltrd SRingTRingNzRingHmulGrpSMndHommulGrpT
29 10 28 jca SRingTRingNzRingHSGrpHomTHmulGrpSMndHommulGrpT
30 18 20 isrhm HSRingHomTSRingTRingHSGrpHomTHmulGrpSMndHommulGrpT
31 5 29 30 sylanbrc SRingTRingNzRingHSRingHomT