Step |
Hyp |
Ref |
Expression |
1 |
|
c0mhm.b |
|- B = ( Base ` S ) |
2 |
|
c0mhm.0 |
|- .0. = ( 0g ` T ) |
3 |
|
c0mhm.h |
|- H = ( x e. B |-> .0. ) |
4 |
|
ringssrng |
|- Ring C_ Rng |
5 |
4
|
a1i |
|- ( S e. Rng -> Ring C_ Rng ) |
6 |
5
|
ssdifssd |
|- ( S e. Rng -> ( Ring \ NzRing ) C_ Rng ) |
7 |
6
|
sseld |
|- ( S e. Rng -> ( T e. ( Ring \ NzRing ) -> T e. Rng ) ) |
8 |
7
|
imdistani |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> ( S e. Rng /\ T e. Rng ) ) |
9 |
|
rngabl |
|- ( S e. Rng -> S e. Abel ) |
10 |
|
ablgrp |
|- ( S e. Abel -> S e. Grp ) |
11 |
9 10
|
syl |
|- ( S e. Rng -> S e. Grp ) |
12 |
|
eldifi |
|- ( T e. ( Ring \ NzRing ) -> T e. Ring ) |
13 |
|
ringgrp |
|- ( T e. Ring -> T e. Grp ) |
14 |
12 13
|
syl |
|- ( T e. ( Ring \ NzRing ) -> T e. Grp ) |
15 |
1 2 3
|
c0ghm |
|- ( ( S e. Grp /\ T e. Grp ) -> H e. ( S GrpHom T ) ) |
16 |
11 14 15
|
syl2an |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> H e. ( S GrpHom T ) ) |
17 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
18 |
|
eqid |
|- ( 1r ` T ) = ( 1r ` T ) |
19 |
17 2 18
|
0ring1eq0 |
|- ( T e. ( Ring \ NzRing ) -> ( 1r ` T ) = .0. ) |
20 |
19
|
eqcomd |
|- ( T e. ( Ring \ NzRing ) -> .0. = ( 1r ` T ) ) |
21 |
20
|
mpteq2dv |
|- ( T e. ( Ring \ NzRing ) -> ( x e. B |-> .0. ) = ( x e. B |-> ( 1r ` T ) ) ) |
22 |
21
|
adantl |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> ( x e. B |-> .0. ) = ( x e. B |-> ( 1r ` T ) ) ) |
23 |
3 22
|
syl5eq |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> H = ( x e. B |-> ( 1r ` T ) ) ) |
24 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
25 |
24
|
rngmgp |
|- ( S e. Rng -> ( mulGrp ` S ) e. Smgrp ) |
26 |
|
sgrpmgm |
|- ( ( mulGrp ` S ) e. Smgrp -> ( mulGrp ` S ) e. Mgm ) |
27 |
25 26
|
syl |
|- ( S e. Rng -> ( mulGrp ` S ) e. Mgm ) |
28 |
|
eqid |
|- ( mulGrp ` T ) = ( mulGrp ` T ) |
29 |
28
|
ringmgp |
|- ( T e. Ring -> ( mulGrp ` T ) e. Mnd ) |
30 |
12 29
|
syl |
|- ( T e. ( Ring \ NzRing ) -> ( mulGrp ` T ) e. Mnd ) |
31 |
24 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` S ) ) |
32 |
28 18
|
ringidval |
|- ( 1r ` T ) = ( 0g ` ( mulGrp ` T ) ) |
33 |
|
eqid |
|- ( x e. B |-> ( 1r ` T ) ) = ( x e. B |-> ( 1r ` T ) ) |
34 |
31 32 33
|
c0mgm |
|- ( ( ( mulGrp ` S ) e. Mgm /\ ( mulGrp ` T ) e. Mnd ) -> ( x e. B |-> ( 1r ` T ) ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) |
35 |
27 30 34
|
syl2an |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> ( x e. B |-> ( 1r ` T ) ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) |
36 |
23 35
|
eqeltrd |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> H e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) |
37 |
16 36
|
jca |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> ( H e. ( S GrpHom T ) /\ H e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) ) |
38 |
24 28
|
isrnghmmul |
|- ( H e. ( S RngHomo T ) <-> ( ( S e. Rng /\ T e. Rng ) /\ ( H e. ( S GrpHom T ) /\ H e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) ) ) |
39 |
8 37 38
|
sylanbrc |
|- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> H e. ( S RngHomo T ) ) |