Step |
Hyp |
Ref |
Expression |
1 |
|
isrnghmmul.m |
|- M = ( mulGrp ` R ) |
2 |
|
isrnghmmul.n |
|- N = ( mulGrp ` S ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
5 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
6 |
3 4 5
|
isrnghm |
|- ( F e. ( R RngHomo S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) |
7 |
1
|
rngmgp |
|- ( R e. Rng -> M e. Smgrp ) |
8 |
|
sgrpmgm |
|- ( M e. Smgrp -> M e. Mgm ) |
9 |
7 8
|
syl |
|- ( R e. Rng -> M e. Mgm ) |
10 |
2
|
rngmgp |
|- ( S e. Rng -> N e. Smgrp ) |
11 |
|
sgrpmgm |
|- ( N e. Smgrp -> N e. Mgm ) |
12 |
10 11
|
syl |
|- ( S e. Rng -> N e. Mgm ) |
13 |
9 12
|
anim12i |
|- ( ( R e. Rng /\ S e. Rng ) -> ( M e. Mgm /\ N e. Mgm ) ) |
14 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
15 |
3 14
|
ghmf |
|- ( F e. ( R GrpHom S ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
16 |
13 15
|
anim12i |
|- ( ( ( R e. Rng /\ S e. Rng ) /\ F e. ( R GrpHom S ) ) -> ( ( M e. Mgm /\ N e. Mgm ) /\ F : ( Base ` R ) --> ( Base ` S ) ) ) |
17 |
16
|
biantrurd |
|- ( ( ( R e. Rng /\ S e. Rng ) /\ F e. ( R GrpHom S ) ) -> ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) <-> ( ( ( M e. Mgm /\ N e. Mgm ) /\ F : ( Base ` R ) --> ( Base ` S ) ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) |
18 |
|
anass |
|- ( ( ( ( M e. Mgm /\ N e. Mgm ) /\ F : ( Base ` R ) --> ( Base ` S ) ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) <-> ( ( M e. Mgm /\ N e. Mgm ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) |
19 |
17 18
|
bitrdi |
|- ( ( ( R e. Rng /\ S e. Rng ) /\ F e. ( R GrpHom S ) ) -> ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) <-> ( ( M e. Mgm /\ N e. Mgm ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) ) |
20 |
1 3
|
mgpbas |
|- ( Base ` R ) = ( Base ` M ) |
21 |
2 14
|
mgpbas |
|- ( Base ` S ) = ( Base ` N ) |
22 |
1 4
|
mgpplusg |
|- ( .r ` R ) = ( +g ` M ) |
23 |
2 5
|
mgpplusg |
|- ( .r ` S ) = ( +g ` N ) |
24 |
20 21 22 23
|
ismgmhm |
|- ( F e. ( M MgmHom N ) <-> ( ( M e. Mgm /\ N e. Mgm ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) |
25 |
19 24
|
bitr4di |
|- ( ( ( R e. Rng /\ S e. Rng ) /\ F e. ( R GrpHom S ) ) -> ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) <-> F e. ( M MgmHom N ) ) ) |
26 |
25
|
pm5.32da |
|- ( ( R e. Rng /\ S e. Rng ) -> ( ( F e. ( R GrpHom S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) <-> ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) ) |
27 |
26
|
pm5.32i |
|- ( ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) ) |
28 |
6 27
|
bitri |
|- ( F e. ( R RngHomo S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) ) |