Metamath Proof Explorer


Theorem rnghmmgmhm

Description: A non-unital ring homomorphism is a homomorphism of multiplicative magmas. (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses isrnghmmul.m
|- M = ( mulGrp ` R )
isrnghmmul.n
|- N = ( mulGrp ` S )
Assertion rnghmmgmhm
|- ( F e. ( R RngHomo S ) -> F e. ( M MgmHom N ) )

Proof

Step Hyp Ref Expression
1 isrnghmmul.m
 |-  M = ( mulGrp ` R )
2 isrnghmmul.n
 |-  N = ( mulGrp ` S )
3 1 2 isrnghmmul
 |-  ( F e. ( R RngHomo S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) )
4 3 simprbi
 |-  ( F e. ( R RngHomo S ) -> ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) )
5 4 simprd
 |-  ( F e. ( R RngHomo S ) -> F e. ( M MgmHom N ) )