Description: A non-unital ring homomorphism is a homomorphism of multiplicative magmas. (Contributed by AV, 27-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isrnghmmul.m | |- M = ( mulGrp ` R ) |
|
isrnghmmul.n | |- N = ( mulGrp ` S ) |
||
Assertion | rnghmmgmhm | |- ( F e. ( R RngHomo S ) -> F e. ( M MgmHom N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrnghmmul.m | |- M = ( mulGrp ` R ) |
|
2 | isrnghmmul.n | |- N = ( mulGrp ` S ) |
|
3 | 1 2 | isrnghmmul | |- ( F e. ( R RngHomo S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) ) |
4 | 3 | simprbi | |- ( F e. ( R RngHomo S ) -> ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) |
5 | 4 | simprd | |- ( F e. ( R RngHomo S ) -> F e. ( M MgmHom N ) ) |