Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
2 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
3 |
1 2
|
isrnghmmul |
|- ( h e. ( R RngHomo S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) |
4 |
|
elin |
|- ( h e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) <-> ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) |
5 |
|
ibar |
|- ( ( R e. Rng /\ S e. Rng ) -> ( ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) ) |
6 |
4 5
|
bitr2id |
|- ( ( R e. Rng /\ S e. Rng ) -> ( ( ( R e. Rng /\ S e. Rng ) /\ ( h e. ( R GrpHom S ) /\ h e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) <-> h e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) |
7 |
3 6
|
syl5bb |
|- ( ( R e. Rng /\ S e. Rng ) -> ( h e. ( R RngHomo S ) <-> h e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) ) |
8 |
7
|
eqrdv |
|- ( ( R e. Rng /\ S e. Rng ) -> ( R RngHomo S ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) ) |