| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 2 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
| 3 |
1 2
|
isrnghmmul |
⊢ ( ℎ ∈ ( 𝑅 RngHom 𝑆 ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 4 |
|
elin |
⊢ ( ℎ ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ↔ ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) |
| 5 |
|
ibar |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) ) |
| 6 |
4 5
|
bitr2id |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ↔ ℎ ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 7 |
3 6
|
bitrid |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ℎ ∈ ( 𝑅 RngHom 𝑆 ) ↔ ℎ ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
| 8 |
7
|
eqrdv |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( 𝑅 RngHom 𝑆 ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) |