Metamath Proof Explorer


Theorem rnghmval2

Description: The non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 1-Mar-2020)

Ref Expression
Assertion rnghmval2 ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( 𝑅 RngHomo 𝑆 ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
2 eqid ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 )
3 1 2 isrnghmmul ( ∈ ( 𝑅 RngHomo 𝑆 ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) )
4 elin ( ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ↔ ( ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) )
5 ibar ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) )
6 4 5 bitr2id ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ↔ ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) )
7 3 6 syl5bb ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ∈ ( 𝑅 RngHomo 𝑆 ) ↔ ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) )
8 7 eqrdv ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( 𝑅 RngHomo 𝑆 ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) )