Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
3 |
1 2
|
isrnghmmul |
⊢ ( ℎ ∈ ( 𝑅 RngHomo 𝑆 ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
4 |
|
elin |
⊢ ( ℎ ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ↔ ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) |
5 |
|
ibar |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) ) |
6 |
4 5
|
bitr2id |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( ℎ ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ℎ ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ↔ ℎ ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
7 |
3 6
|
syl5bb |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ℎ ∈ ( 𝑅 RngHomo 𝑆 ) ↔ ℎ ∈ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) ) |
8 |
7
|
eqrdv |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( 𝑅 RngHomo 𝑆 ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) ) |