Step |
Hyp |
Ref |
Expression |
1 |
|
df-rngisom |
⊢ RngIsom = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RngHomo 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RngHomo 𝑟 ) } ) |
2 |
1
|
a1i |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → RngIsom = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RngHomo 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RngHomo 𝑟 ) } ) ) |
3 |
|
oveq12 |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑟 RngHomo 𝑠 ) = ( 𝑅 RngHomo 𝑆 ) ) |
4 |
3
|
adantl |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → ( 𝑟 RngHomo 𝑠 ) = ( 𝑅 RngHomo 𝑆 ) ) |
5 |
|
oveq12 |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 𝑠 RngHomo 𝑟 ) = ( 𝑆 RngHomo 𝑅 ) ) |
6 |
5
|
ancoms |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑠 RngHomo 𝑟 ) = ( 𝑆 RngHomo 𝑅 ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → ( 𝑠 RngHomo 𝑟 ) = ( 𝑆 RngHomo 𝑅 ) ) |
8 |
7
|
eleq2d |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → ( ◡ 𝑓 ∈ ( 𝑠 RngHomo 𝑟 ) ↔ ◡ 𝑓 ∈ ( 𝑆 RngHomo 𝑅 ) ) ) |
9 |
4 8
|
rabeqbidv |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → { 𝑓 ∈ ( 𝑟 RngHomo 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RngHomo 𝑟 ) } = { 𝑓 ∈ ( 𝑅 RngHomo 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RngHomo 𝑅 ) } ) |
10 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
11 |
10
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → 𝑅 ∈ V ) |
12 |
|
elex |
⊢ ( 𝑆 ∈ 𝑊 → 𝑆 ∈ V ) |
13 |
12
|
adantl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → 𝑆 ∈ V ) |
14 |
|
ovex |
⊢ ( 𝑅 RngHomo 𝑆 ) ∈ V |
15 |
14
|
rabex |
⊢ { 𝑓 ∈ ( 𝑅 RngHomo 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RngHomo 𝑅 ) } ∈ V |
16 |
15
|
a1i |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → { 𝑓 ∈ ( 𝑅 RngHomo 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RngHomo 𝑅 ) } ∈ V ) |
17 |
2 9 11 13 16
|
ovmpod |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝑅 RngIsom 𝑆 ) = { 𝑓 ∈ ( 𝑅 RngHomo 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RngHomo 𝑅 ) } ) |
18 |
17
|
eleq2d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝑅 RngIsom 𝑆 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑅 RngHomo 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RngHomo 𝑅 ) } ) ) |
19 |
|
cnveq |
⊢ ( 𝑓 = 𝐹 → ◡ 𝑓 = ◡ 𝐹 ) |
20 |
19
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ◡ 𝑓 ∈ ( 𝑆 RngHomo 𝑅 ) ↔ ◡ 𝐹 ∈ ( 𝑆 RngHomo 𝑅 ) ) ) |
21 |
20
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑅 RngHomo 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RngHomo 𝑅 ) } ↔ ( 𝐹 ∈ ( 𝑅 RngHomo 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RngHomo 𝑅 ) ) ) |
22 |
18 21
|
bitrdi |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝑅 RngIsom 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHomo 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RngHomo 𝑅 ) ) ) ) |