Description: Define the set of non-unital ring isomorphisms from r to s . (Contributed by AV, 20-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-rngisom | ⊢ RngIsom = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RngHomo 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RngHomo 𝑟 ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | crngs | ⊢ RngIsom | |
1 | vr | ⊢ 𝑟 | |
2 | cvv | ⊢ V | |
3 | vs | ⊢ 𝑠 | |
4 | vf | ⊢ 𝑓 | |
5 | 1 | cv | ⊢ 𝑟 |
6 | crngh | ⊢ RngHomo | |
7 | 3 | cv | ⊢ 𝑠 |
8 | 5 7 6 | co | ⊢ ( 𝑟 RngHomo 𝑠 ) |
9 | 4 | cv | ⊢ 𝑓 |
10 | 9 | ccnv | ⊢ ◡ 𝑓 |
11 | 7 5 6 | co | ⊢ ( 𝑠 RngHomo 𝑟 ) |
12 | 10 11 | wcel | ⊢ ◡ 𝑓 ∈ ( 𝑠 RngHomo 𝑟 ) |
13 | 12 4 8 | crab | ⊢ { 𝑓 ∈ ( 𝑟 RngHomo 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RngHomo 𝑟 ) } |
14 | 1 3 2 2 13 | cmpo | ⊢ ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RngHomo 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RngHomo 𝑟 ) } ) |
15 | 0 14 | wceq | ⊢ RngIsom = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RngHomo 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RngHomo 𝑟 ) } ) |