Metamath Proof Explorer


Definition df-rngisom

Description: Define the set of non-unital ring isomorphisms from r to s . (Contributed by AV, 20-Feb-2020)

Ref Expression
Assertion df-rngisom
|- RngIsom = ( r e. _V , s e. _V |-> { f e. ( r RngHomo s ) | `' f e. ( s RngHomo r ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crngs
 |-  RngIsom
1 vr
 |-  r
2 cvv
 |-  _V
3 vs
 |-  s
4 vf
 |-  f
5 1 cv
 |-  r
6 crngh
 |-  RngHomo
7 3 cv
 |-  s
8 5 7 6 co
 |-  ( r RngHomo s )
9 4 cv
 |-  f
10 9 ccnv
 |-  `' f
11 7 5 6 co
 |-  ( s RngHomo r )
12 10 11 wcel
 |-  `' f e. ( s RngHomo r )
13 12 4 8 crab
 |-  { f e. ( r RngHomo s ) | `' f e. ( s RngHomo r ) }
14 1 3 2 2 13 cmpo
 |-  ( r e. _V , s e. _V |-> { f e. ( r RngHomo s ) | `' f e. ( s RngHomo r ) } )
15 0 14 wceq
 |-  RngIsom = ( r e. _V , s e. _V |-> { f e. ( r RngHomo s ) | `' f e. ( s RngHomo r ) } )