Metamath Proof Explorer


Theorem isrngisom

Description: An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020)

Ref Expression
Assertion isrngisom R V S W F R RngIsom S F R RngHomo S F -1 S RngHomo R

Proof

Step Hyp Ref Expression
1 df-rngisom RngIsom = r V , s V f r RngHomo s | f -1 s RngHomo r
2 1 a1i R V S W RngIsom = r V , s V f r RngHomo s | f -1 s RngHomo r
3 oveq12 r = R s = S r RngHomo s = R RngHomo S
4 3 adantl R V S W r = R s = S r RngHomo s = R RngHomo S
5 oveq12 s = S r = R s RngHomo r = S RngHomo R
6 5 ancoms r = R s = S s RngHomo r = S RngHomo R
7 6 adantl R V S W r = R s = S s RngHomo r = S RngHomo R
8 7 eleq2d R V S W r = R s = S f -1 s RngHomo r f -1 S RngHomo R
9 4 8 rabeqbidv R V S W r = R s = S f r RngHomo s | f -1 s RngHomo r = f R RngHomo S | f -1 S RngHomo R
10 elex R V R V
11 10 adantr R V S W R V
12 elex S W S V
13 12 adantl R V S W S V
14 ovex R RngHomo S V
15 14 rabex f R RngHomo S | f -1 S RngHomo R V
16 15 a1i R V S W f R RngHomo S | f -1 S RngHomo R V
17 2 9 11 13 16 ovmpod R V S W R RngIsom S = f R RngHomo S | f -1 S RngHomo R
18 17 eleq2d R V S W F R RngIsom S F f R RngHomo S | f -1 S RngHomo R
19 cnveq f = F f -1 = F -1
20 19 eleq1d f = F f -1 S RngHomo R F -1 S RngHomo R
21 20 elrab F f R RngHomo S | f -1 S RngHomo R F R RngHomo S F -1 S RngHomo R
22 18 21 bitrdi R V S W F R RngIsom S F R RngHomo S F -1 S RngHomo R