Step |
Hyp |
Ref |
Expression |
1 |
|
zrtermoringc.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
2 |
|
zrtermoringc.c |
⊢ 𝐶 = ( RingCat ‘ 𝑈 ) |
3 |
|
zrtermoringc.z |
⊢ ( 𝜑 → 𝑍 ∈ ( Ring ∖ NzRing ) ) |
4 |
|
zrtermoringc.e |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
5 |
|
zrninitoringc.e |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) 𝑟 ∈ NzRing ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
7 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → 𝑈 ∈ 𝑉 ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
9 |
3
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
10 |
4 9
|
elind |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑈 ∩ Ring ) ) |
11 |
2 6 1
|
ringcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Ring ) ) |
12 |
10 11
|
eleqtrrd |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
14 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → 𝑟 ∈ ( Base ‘ 𝐶 ) ) |
15 |
2 6 7 8 13 14
|
ringchom |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) = ( 𝑍 RingHom 𝑟 ) ) |
16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑍 ∈ ( Ring ∖ NzRing ) ) |
17 |
|
nrhmzr |
⊢ ( ( 𝑍 ∈ ( Ring ∖ NzRing ) ∧ 𝑟 ∈ NzRing ) → ( 𝑍 RingHom 𝑟 ) = ∅ ) |
18 |
16 17
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ( 𝑍 RingHom 𝑟 ) = ∅ ) |
19 |
15 18
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) = ∅ ) |
20 |
|
eq0 |
⊢ ( ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) = ∅ ↔ ∀ ℎ ¬ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
21 |
19 20
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ∀ ℎ ¬ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
22 |
|
alnex |
⊢ ( ∀ ℎ ¬ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ↔ ¬ ∃ ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
23 |
21 22
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ¬ ∃ ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
24 |
|
euex |
⊢ ( ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) → ∃ ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
25 |
23 24
|
nsyl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ¬ ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
26 |
25
|
ex |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑟 ∈ NzRing → ¬ ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
27 |
26
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) 𝑟 ∈ NzRing → ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) ¬ ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
28 |
5 27
|
mpd |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) ¬ ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
29 |
|
rexnal |
⊢ ( ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) ¬ ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ↔ ¬ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
30 |
28 29
|
sylib |
⊢ ( 𝜑 → ¬ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) |
31 |
|
df-nel |
⊢ ( 𝑍 ∉ ( InitO ‘ 𝐶 ) ↔ ¬ 𝑍 ∈ ( InitO ‘ 𝐶 ) ) |
32 |
2
|
ringccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
33 |
1 32
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
34 |
6 8 33 12
|
isinito |
⊢ ( 𝜑 → ( 𝑍 ∈ ( InitO ‘ 𝐶 ) ↔ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
35 |
34
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑍 ∈ ( InitO ‘ 𝐶 ) ↔ ¬ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
36 |
31 35
|
syl5bb |
⊢ ( 𝜑 → ( 𝑍 ∉ ( InitO ‘ 𝐶 ) ↔ ¬ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ℎ ℎ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) ) |
37 |
30 36
|
mpbird |
⊢ ( 𝜑 → 𝑍 ∉ ( InitO ‘ 𝐶 ) ) |