Metamath Proof Explorer


Theorem zrninitoringc

Description: The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020)

Ref Expression
Hypotheses zrtermoringc.u ( 𝜑𝑈𝑉 )
zrtermoringc.c 𝐶 = ( RingCat ‘ 𝑈 )
zrtermoringc.z ( 𝜑𝑍 ∈ ( Ring ∖ NzRing ) )
zrtermoringc.e ( 𝜑𝑍𝑈 )
zrninitoringc.e ( 𝜑 → ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) 𝑟 ∈ NzRing )
Assertion zrninitoringc ( 𝜑𝑍 ∉ ( InitO ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 zrtermoringc.u ( 𝜑𝑈𝑉 )
2 zrtermoringc.c 𝐶 = ( RingCat ‘ 𝑈 )
3 zrtermoringc.z ( 𝜑𝑍 ∈ ( Ring ∖ NzRing ) )
4 zrtermoringc.e ( 𝜑𝑍𝑈 )
5 zrninitoringc.e ( 𝜑 → ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) 𝑟 ∈ NzRing )
6 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
7 1 ad2antrr ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → 𝑈𝑉 )
8 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
9 3 eldifad ( 𝜑𝑍 ∈ Ring )
10 4 9 elind ( 𝜑𝑍 ∈ ( 𝑈 ∩ Ring ) )
11 2 6 1 ringcbas ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Ring ) )
12 10 11 eleqtrrd ( 𝜑𝑍 ∈ ( Base ‘ 𝐶 ) )
13 12 ad2antrr ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → 𝑍 ∈ ( Base ‘ 𝐶 ) )
14 simplr ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → 𝑟 ∈ ( Base ‘ 𝐶 ) )
15 2 6 7 8 13 14 ringchom ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) = ( 𝑍 RingHom 𝑟 ) )
16 3 adantr ( ( 𝜑𝑟 ∈ ( Base ‘ 𝐶 ) ) → 𝑍 ∈ ( Ring ∖ NzRing ) )
17 nrhmzr ( ( 𝑍 ∈ ( Ring ∖ NzRing ) ∧ 𝑟 ∈ NzRing ) → ( 𝑍 RingHom 𝑟 ) = ∅ )
18 16 17 sylan ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ( 𝑍 RingHom 𝑟 ) = ∅ )
19 15 18 eqtrd ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) = ∅ )
20 eq0 ( ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) = ∅ ↔ ∀ ¬ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) )
21 19 20 sylib ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ∀ ¬ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) )
22 alnex ( ∀ ¬ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ↔ ¬ ∃ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) )
23 21 22 sylib ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ¬ ∃ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) )
24 euex ( ∃! ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) → ∃ ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) )
25 23 24 nsyl ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑟 ∈ NzRing ) → ¬ ∃! ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) )
26 25 ex ( ( 𝜑𝑟 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑟 ∈ NzRing → ¬ ∃! ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) )
27 26 reximdva ( 𝜑 → ( ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) 𝑟 ∈ NzRing → ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) ¬ ∃! ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) )
28 5 27 mpd ( 𝜑 → ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) ¬ ∃! ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) )
29 rexnal ( ∃ 𝑟 ∈ ( Base ‘ 𝐶 ) ¬ ∃! ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ↔ ¬ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) )
30 28 29 sylib ( 𝜑 → ¬ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) )
31 df-nel ( 𝑍 ∉ ( InitO ‘ 𝐶 ) ↔ ¬ 𝑍 ∈ ( InitO ‘ 𝐶 ) )
32 2 ringccat ( 𝑈𝑉𝐶 ∈ Cat )
33 1 32 syl ( 𝜑𝐶 ∈ Cat )
34 6 8 33 12 isinito ( 𝜑 → ( 𝑍 ∈ ( InitO ‘ 𝐶 ) ↔ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) )
35 34 notbid ( 𝜑 → ( ¬ 𝑍 ∈ ( InitO ‘ 𝐶 ) ↔ ¬ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) )
36 31 35 syl5bb ( 𝜑 → ( 𝑍 ∉ ( InitO ‘ 𝐶 ) ↔ ¬ ∀ 𝑟 ∈ ( Base ‘ 𝐶 ) ∃! ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑟 ) ) )
37 30 36 mpbird ( 𝜑𝑍 ∉ ( InitO ‘ 𝐶 ) )