Metamath Proof Explorer


Theorem nzerooringczr

Description: There is no zero object in the category of unital rings (at least in a universe which contains the zero ring and the ring of integers). Example 7.9 (3) in Adamek p. 103. (Contributed by AV, 18-Apr-2020)

Ref Expression
Hypotheses nzerooringczr.u ( 𝜑𝑈𝑉 )
nzerooringczr.c 𝐶 = ( RingCat ‘ 𝑈 )
nzerooringczr.z ( 𝜑𝑍 ∈ ( Ring ∖ NzRing ) )
nzerooringczr.e ( 𝜑𝑍𝑈 )
nzerooringczr.i ( 𝜑 → ℤring𝑈 )
Assertion nzerooringczr ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ )

Proof

Step Hyp Ref Expression
1 nzerooringczr.u ( 𝜑𝑈𝑉 )
2 nzerooringczr.c 𝐶 = ( RingCat ‘ 𝑈 )
3 nzerooringczr.z ( 𝜑𝑍 ∈ ( Ring ∖ NzRing ) )
4 nzerooringczr.e ( 𝜑𝑍𝑈 )
5 nzerooringczr.i ( 𝜑 → ℤring𝑈 )
6 ax-1 ( ( ZeroO ‘ 𝐶 ) = ∅ → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) )
7 neq0 ( ¬ ( ZeroO ‘ 𝐶 ) = ∅ ↔ ∃ ∈ ( ZeroO ‘ 𝐶 ) )
8 2 ringccat ( 𝑈𝑉𝐶 ∈ Cat )
9 1 8 syl ( 𝜑𝐶 ∈ Cat )
10 iszeroi ( ( 𝐶 ∈ Cat ∧ ∈ ( ZeroO ‘ 𝐶 ) ) → ( ∈ ( Base ‘ 𝐶 ) ∧ ( ∈ ( InitO ‘ 𝐶 ) ∧ ∈ ( TermO ‘ 𝐶 ) ) ) )
11 9 10 sylan ( ( 𝜑 ∈ ( ZeroO ‘ 𝐶 ) ) → ( ∈ ( Base ‘ 𝐶 ) ∧ ( ∈ ( InitO ‘ 𝐶 ) ∧ ∈ ( TermO ‘ 𝐶 ) ) ) )
12 1 2 3 4 zrtermoringc ( 𝜑𝑍 ∈ ( TermO ‘ 𝐶 ) )
13 1 5 2 irinitoringc ( 𝜑 → ℤring ∈ ( InitO ‘ 𝐶 ) )
14 9 ad2antrr ( ( ( 𝜑 ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → 𝐶 ∈ Cat )
15 simplr ( ( ( 𝜑 ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ∈ ( InitO ‘ 𝐶 ) )
16 simpr ( ( ( 𝜑 ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ℤring ∈ ( InitO ‘ 𝐶 ) )
17 14 15 16 initoeu1w ( ( ( 𝜑 ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ( ≃𝑐𝐶 ) ℤring )
18 9 ad2antrr ( ( ( 𝜑 ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → 𝐶 ∈ Cat )
19 simpr ( ( ( 𝜑 ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → 𝑍 ∈ ( TermO ‘ 𝐶 ) )
20 simplr ( ( ( 𝜑 ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → ∈ ( TermO ‘ 𝐶 ) )
21 18 19 20 termoeu1w ( ( ( 𝜑 ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → 𝑍 ( ≃𝑐𝐶 ) )
22 cictr ( ( 𝐶 ∈ Cat ∧ 𝑍 ( ≃𝑐𝐶 ) ( ≃𝑐𝐶 ) ℤring ) → 𝑍 ( ≃𝑐𝐶 ) ℤring )
23 9 22 syl3an1 ( ( 𝜑𝑍 ( ≃𝑐𝐶 ) ( ≃𝑐𝐶 ) ℤring ) → 𝑍 ( ≃𝑐𝐶 ) ℤring )
24 eqid ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 )
25 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
26 3 eldifad ( 𝜑𝑍 ∈ Ring )
27 4 26 elind ( 𝜑𝑍 ∈ ( 𝑈 ∩ Ring ) )
28 2 25 1 ringcbas ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Ring ) )
29 27 28 eleqtrrd ( 𝜑𝑍 ∈ ( Base ‘ 𝐶 ) )
30 zringring ring ∈ Ring
31 30 a1i ( 𝜑 → ℤring ∈ Ring )
32 5 31 elind ( 𝜑 → ℤring ∈ ( 𝑈 ∩ Ring ) )
33 32 28 eleqtrrd ( 𝜑 → ℤring ∈ ( Base ‘ 𝐶 ) )
34 24 25 9 29 33 cic ( 𝜑 → ( 𝑍 ( ≃𝑐𝐶 ) ℤring ↔ ∃ 𝑓 𝑓 ∈ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ) )
35 n0 ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) )
36 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
37 25 36 24 9 29 33 isohom ( 𝜑 → ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) )
38 ssn0 ( ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ∧ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ ) → ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ≠ ∅ )
39 2 25 1 36 29 33 ringchom ( 𝜑 → ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) = ( 𝑍 RingHom ℤring ) )
40 39 neeq1d ( 𝜑 → ( ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ≠ ∅ ↔ ( 𝑍 RingHom ℤring ) ≠ ∅ ) )
41 zringnzr ring ∈ NzRing
42 nrhmzr ( ( 𝑍 ∈ ( Ring ∖ NzRing ) ∧ ℤring ∈ NzRing ) → ( 𝑍 RingHom ℤring ) = ∅ )
43 3 41 42 sylancl ( 𝜑 → ( 𝑍 RingHom ℤring ) = ∅ )
44 eqneqall ( ( 𝑍 RingHom ℤring ) = ∅ → ( ( 𝑍 RingHom ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) )
45 43 44 syl ( 𝜑 → ( ( 𝑍 RingHom ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) )
46 40 45 sylbid ( 𝜑 → ( ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) )
47 38 46 syl5com ( ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ∧ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ ) → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) )
48 47 expcom ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ → ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) ) )
49 48 com13 ( 𝜑 → ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) → ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) ) )
50 37 49 mpd ( 𝜑 → ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) )
51 35 50 syl5bir ( 𝜑 → ( ∃ 𝑓 𝑓 ∈ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) → ( ZeroO ‘ 𝐶 ) = ∅ ) )
52 34 51 sylbid ( 𝜑 → ( 𝑍 ( ≃𝑐𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) )
53 52 3ad2ant1 ( ( 𝜑𝑍 ( ≃𝑐𝐶 ) ( ≃𝑐𝐶 ) ℤring ) → ( 𝑍 ( ≃𝑐𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) )
54 23 53 mpd ( ( 𝜑𝑍 ( ≃𝑐𝐶 ) ( ≃𝑐𝐶 ) ℤring ) → ( ZeroO ‘ 𝐶 ) = ∅ )
55 54 3exp ( 𝜑 → ( 𝑍 ( ≃𝑐𝐶 ) → ( ( ≃𝑐𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) )
56 55 a1dd ( 𝜑 → ( 𝑍 ( ≃𝑐𝐶 ) → ( ∈ ( Base ‘ 𝐶 ) → ( ( ≃𝑐𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) )
57 56 ad2antrr ( ( ( 𝜑 ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝑍 ( ≃𝑐𝐶 ) → ( ∈ ( Base ‘ 𝐶 ) → ( ( ≃𝑐𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) )
58 21 57 mpd ( ( ( 𝜑 ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → ( ∈ ( Base ‘ 𝐶 ) → ( ( ≃𝑐𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) )
59 58 exp31 ( 𝜑 → ( ∈ ( TermO ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ∈ ( Base ‘ 𝐶 ) → ( ( ≃𝑐𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) )
60 59 com34 ( 𝜑 → ( ∈ ( TermO ‘ 𝐶 ) → ( ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ( ≃𝑐𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) )
61 60 com25 ( 𝜑 → ( ( ≃𝑐𝐶 ) ℤring → ( ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ∈ ( TermO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) )
62 61 ad2antrr ( ( ( 𝜑 ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ( ( ≃𝑐𝐶 ) ℤring → ( ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ∈ ( TermO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) )
63 17 62 mpd ( ( ( 𝜑 ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ( ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ∈ ( TermO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) )
64 63 ex ( ( 𝜑 ∈ ( InitO ‘ 𝐶 ) ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ∈ ( TermO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) )
65 64 com25 ( ( 𝜑 ∈ ( InitO ‘ 𝐶 ) ) → ( ∈ ( TermO ‘ 𝐶 ) → ( ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) )
66 65 expimpd ( 𝜑 → ( ( ∈ ( InitO ‘ 𝐶 ) ∧ ∈ ( TermO ‘ 𝐶 ) ) → ( ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) )
67 66 com23 ( 𝜑 → ( ∈ ( Base ‘ 𝐶 ) → ( ( ∈ ( InitO ‘ 𝐶 ) ∧ ∈ ( TermO ‘ 𝐶 ) ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) )
68 67 impd ( 𝜑 → ( ( ∈ ( Base ‘ 𝐶 ) ∧ ( ∈ ( InitO ‘ 𝐶 ) ∧ ∈ ( TermO ‘ 𝐶 ) ) ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) )
69 68 com24 ( 𝜑 → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ( ∈ ( Base ‘ 𝐶 ) ∧ ( ∈ ( InitO ‘ 𝐶 ) ∧ ∈ ( TermO ‘ 𝐶 ) ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) )
70 13 69 mpd ( 𝜑 → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ( ∈ ( Base ‘ 𝐶 ) ∧ ( ∈ ( InitO ‘ 𝐶 ) ∧ ∈ ( TermO ‘ 𝐶 ) ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) )
71 12 70 mpd ( 𝜑 → ( ( ∈ ( Base ‘ 𝐶 ) ∧ ( ∈ ( InitO ‘ 𝐶 ) ∧ ∈ ( TermO ‘ 𝐶 ) ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) )
72 71 adantr ( ( 𝜑 ∈ ( ZeroO ‘ 𝐶 ) ) → ( ( ∈ ( Base ‘ 𝐶 ) ∧ ( ∈ ( InitO ‘ 𝐶 ) ∧ ∈ ( TermO ‘ 𝐶 ) ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) )
73 11 72 mpd ( ( 𝜑 ∈ ( ZeroO ‘ 𝐶 ) ) → ( ZeroO ‘ 𝐶 ) = ∅ )
74 73 expcom ( ∈ ( ZeroO ‘ 𝐶 ) → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) )
75 74 exlimiv ( ∃ ∈ ( ZeroO ‘ 𝐶 ) → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) )
76 7 75 sylbi ( ¬ ( ZeroO ‘ 𝐶 ) = ∅ → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) )
77 6 76 pm2.61i ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ )