| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nzerooringczr.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 2 |
|
nzerooringczr.c |
⊢ 𝐶 = ( RingCat ‘ 𝑈 ) |
| 3 |
|
nzerooringczr.z |
⊢ ( 𝜑 → 𝑍 ∈ ( Ring ∖ NzRing ) ) |
| 4 |
|
nzerooringczr.e |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
| 5 |
|
nzerooringczr.i |
⊢ ( 𝜑 → ℤring ∈ 𝑈 ) |
| 6 |
|
ax-1 |
⊢ ( ( ZeroO ‘ 𝐶 ) = ∅ → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 7 |
|
neq0 |
⊢ ( ¬ ( ZeroO ‘ 𝐶 ) = ∅ ↔ ∃ ℎ ℎ ∈ ( ZeroO ‘ 𝐶 ) ) |
| 8 |
2
|
ringccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 9 |
1 8
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 10 |
|
iszeroi |
⊢ ( ( 𝐶 ∈ Cat ∧ ℎ ∈ ( ZeroO ‘ 𝐶 ) ) → ( ℎ ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ) ) |
| 11 |
9 10
|
sylan |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( ZeroO ‘ 𝐶 ) ) → ( ℎ ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ) ) |
| 12 |
1 2 3 4
|
zrtermoringc |
⊢ ( 𝜑 → 𝑍 ∈ ( TermO ‘ 𝐶 ) ) |
| 13 |
1 5 2
|
irinitoringc |
⊢ ( 𝜑 → ℤring ∈ ( InitO ‘ 𝐶 ) ) |
| 14 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 15 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ℎ ∈ ( InitO ‘ 𝐶 ) ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ℤring ∈ ( InitO ‘ 𝐶 ) ) |
| 17 |
14 15 16
|
initoeu1w |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring ) |
| 18 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → 𝑍 ∈ ( TermO ‘ 𝐶 ) ) |
| 20 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → ℎ ∈ ( TermO ‘ 𝐶 ) ) |
| 21 |
18 19 20
|
termoeu1w |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ ) |
| 22 |
|
cictr |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ ∧ ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring ) → 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℤring ) |
| 23 |
9 22
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ ∧ ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring ) → 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℤring ) |
| 24 |
|
eqid |
⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) |
| 25 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 26 |
3
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
| 27 |
4 26
|
elind |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑈 ∩ Ring ) ) |
| 28 |
2 25 1
|
ringcbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Ring ) ) |
| 29 |
27 28
|
eleqtrrd |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 30 |
|
zringring |
⊢ ℤring ∈ Ring |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → ℤring ∈ Ring ) |
| 32 |
5 31
|
elind |
⊢ ( 𝜑 → ℤring ∈ ( 𝑈 ∩ Ring ) ) |
| 33 |
32 28
|
eleqtrrd |
⊢ ( 𝜑 → ℤring ∈ ( Base ‘ 𝐶 ) ) |
| 34 |
24 25 9 29 33
|
cic |
⊢ ( 𝜑 → ( 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℤring ↔ ∃ 𝑓 𝑓 ∈ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ) ) |
| 35 |
|
n0 |
⊢ ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ) |
| 36 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 37 |
25 36 24 9 29 33
|
isohom |
⊢ ( 𝜑 → ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ) |
| 38 |
|
ssn0 |
⊢ ( ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ∧ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ ) → ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ≠ ∅ ) |
| 39 |
2 25 1 36 29 33
|
ringchom |
⊢ ( 𝜑 → ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) = ( 𝑍 RingHom ℤring ) ) |
| 40 |
39
|
neeq1d |
⊢ ( 𝜑 → ( ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ≠ ∅ ↔ ( 𝑍 RingHom ℤring ) ≠ ∅ ) ) |
| 41 |
|
zringnzr |
⊢ ℤring ∈ NzRing |
| 42 |
|
nrhmzr |
⊢ ( ( 𝑍 ∈ ( Ring ∖ NzRing ) ∧ ℤring ∈ NzRing ) → ( 𝑍 RingHom ℤring ) = ∅ ) |
| 43 |
3 41 42
|
sylancl |
⊢ ( 𝜑 → ( 𝑍 RingHom ℤring ) = ∅ ) |
| 44 |
|
eqneqall |
⊢ ( ( 𝑍 RingHom ℤring ) = ∅ → ( ( 𝑍 RingHom ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 45 |
43 44
|
syl |
⊢ ( 𝜑 → ( ( 𝑍 RingHom ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 46 |
40 45
|
sylbid |
⊢ ( 𝜑 → ( ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 47 |
38 46
|
syl5com |
⊢ ( ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) ∧ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ ) → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 48 |
47
|
expcom |
⊢ ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ → ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) |
| 49 |
48
|
com13 |
⊢ ( 𝜑 → ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ⊆ ( 𝑍 ( Hom ‘ 𝐶 ) ℤring ) → ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) |
| 50 |
37 49
|
mpd |
⊢ ( 𝜑 → ( ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) ≠ ∅ → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 51 |
35 50
|
biimtrrid |
⊢ ( 𝜑 → ( ∃ 𝑓 𝑓 ∈ ( 𝑍 ( Iso ‘ 𝐶 ) ℤring ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 52 |
34 51
|
sylbid |
⊢ ( 𝜑 → ( 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 53 |
52
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ ∧ ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring ) → ( 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 54 |
23 53
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ ∧ ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring ) → ( ZeroO ‘ 𝐶 ) = ∅ ) |
| 55 |
54
|
3exp |
⊢ ( 𝜑 → ( 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) |
| 56 |
55
|
a1dd |
⊢ ( 𝜑 → ( 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) |
| 57 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → ( 𝑍 ( ≃𝑐 ‘ 𝐶 ) ℎ → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) |
| 58 |
21 57
|
mpd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) |
| 59 |
58
|
exp31 |
⊢ ( 𝜑 → ( ℎ ∈ ( TermO ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 60 |
59
|
com34 |
⊢ ( 𝜑 → ( ℎ ∈ ( TermO ‘ 𝐶 ) → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 61 |
60
|
com25 |
⊢ ( 𝜑 → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℎ ∈ ( TermO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 62 |
61
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ( ℎ ( ≃𝑐 ‘ 𝐶 ) ℤring → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℎ ∈ ( TermO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 63 |
17 62
|
mpd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) ∧ ℤring ∈ ( InitO ‘ 𝐶 ) ) → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℎ ∈ ( TermO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) |
| 64 |
63
|
ex |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℎ ∈ ( TermO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 65 |
64
|
com25 |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( InitO ‘ 𝐶 ) ) → ( ℎ ∈ ( TermO ‘ 𝐶 ) → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 66 |
65
|
expimpd |
⊢ ( 𝜑 → ( ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 67 |
66
|
com23 |
⊢ ( 𝜑 → ( ℎ ∈ ( Base ‘ 𝐶 ) → ( ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) ) |
| 68 |
67
|
impd |
⊢ ( 𝜑 → ( ( ℎ ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) |
| 69 |
68
|
com24 |
⊢ ( 𝜑 → ( ℤring ∈ ( InitO ‘ 𝐶 ) → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ( ℎ ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) ) |
| 70 |
13 69
|
mpd |
⊢ ( 𝜑 → ( 𝑍 ∈ ( TermO ‘ 𝐶 ) → ( ( ℎ ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) ) |
| 71 |
12 70
|
mpd |
⊢ ( 𝜑 → ( ( ℎ ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( ZeroO ‘ 𝐶 ) ) → ( ( ℎ ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( InitO ‘ 𝐶 ) ∧ ℎ ∈ ( TermO ‘ 𝐶 ) ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 73 |
11 72
|
mpd |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( ZeroO ‘ 𝐶 ) ) → ( ZeroO ‘ 𝐶 ) = ∅ ) |
| 74 |
73
|
expcom |
⊢ ( ℎ ∈ ( ZeroO ‘ 𝐶 ) → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 75 |
74
|
exlimiv |
⊢ ( ∃ ℎ ℎ ∈ ( ZeroO ‘ 𝐶 ) → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 76 |
7 75
|
sylbi |
⊢ ( ¬ ( ZeroO ‘ 𝐶 ) = ∅ → ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) ) |
| 77 |
6 76
|
pm2.61i |
⊢ ( 𝜑 → ( ZeroO ‘ 𝐶 ) = ∅ ) |