Step |
Hyp |
Ref |
Expression |
1 |
|
nzerooringczr.u |
|- ( ph -> U e. V ) |
2 |
|
nzerooringczr.c |
|- C = ( RingCat ` U ) |
3 |
|
nzerooringczr.z |
|- ( ph -> Z e. ( Ring \ NzRing ) ) |
4 |
|
nzerooringczr.e |
|- ( ph -> Z e. U ) |
5 |
|
nzerooringczr.i |
|- ( ph -> ZZring e. U ) |
6 |
|
ax-1 |
|- ( ( ZeroO ` C ) = (/) -> ( ph -> ( ZeroO ` C ) = (/) ) ) |
7 |
|
neq0 |
|- ( -. ( ZeroO ` C ) = (/) <-> E. h h e. ( ZeroO ` C ) ) |
8 |
2
|
ringccat |
|- ( U e. V -> C e. Cat ) |
9 |
1 8
|
syl |
|- ( ph -> C e. Cat ) |
10 |
|
iszeroi |
|- ( ( C e. Cat /\ h e. ( ZeroO ` C ) ) -> ( h e. ( Base ` C ) /\ ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) ) ) |
11 |
9 10
|
sylan |
|- ( ( ph /\ h e. ( ZeroO ` C ) ) -> ( h e. ( Base ` C ) /\ ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) ) ) |
12 |
1 2 3 4
|
zrtermoringc |
|- ( ph -> Z e. ( TermO ` C ) ) |
13 |
1 5 2
|
irinitoringc |
|- ( ph -> ZZring e. ( InitO ` C ) ) |
14 |
9
|
ad2antrr |
|- ( ( ( ph /\ h e. ( InitO ` C ) ) /\ ZZring e. ( InitO ` C ) ) -> C e. Cat ) |
15 |
|
simplr |
|- ( ( ( ph /\ h e. ( InitO ` C ) ) /\ ZZring e. ( InitO ` C ) ) -> h e. ( InitO ` C ) ) |
16 |
|
simpr |
|- ( ( ( ph /\ h e. ( InitO ` C ) ) /\ ZZring e. ( InitO ` C ) ) -> ZZring e. ( InitO ` C ) ) |
17 |
14 15 16
|
initoeu1w |
|- ( ( ( ph /\ h e. ( InitO ` C ) ) /\ ZZring e. ( InitO ` C ) ) -> h ( ~=c ` C ) ZZring ) |
18 |
9
|
ad2antrr |
|- ( ( ( ph /\ h e. ( TermO ` C ) ) /\ Z e. ( TermO ` C ) ) -> C e. Cat ) |
19 |
|
simpr |
|- ( ( ( ph /\ h e. ( TermO ` C ) ) /\ Z e. ( TermO ` C ) ) -> Z e. ( TermO ` C ) ) |
20 |
|
simplr |
|- ( ( ( ph /\ h e. ( TermO ` C ) ) /\ Z e. ( TermO ` C ) ) -> h e. ( TermO ` C ) ) |
21 |
18 19 20
|
termoeu1w |
|- ( ( ( ph /\ h e. ( TermO ` C ) ) /\ Z e. ( TermO ` C ) ) -> Z ( ~=c ` C ) h ) |
22 |
|
cictr |
|- ( ( C e. Cat /\ Z ( ~=c ` C ) h /\ h ( ~=c ` C ) ZZring ) -> Z ( ~=c ` C ) ZZring ) |
23 |
9 22
|
syl3an1 |
|- ( ( ph /\ Z ( ~=c ` C ) h /\ h ( ~=c ` C ) ZZring ) -> Z ( ~=c ` C ) ZZring ) |
24 |
|
eqid |
|- ( Iso ` C ) = ( Iso ` C ) |
25 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
26 |
3
|
eldifad |
|- ( ph -> Z e. Ring ) |
27 |
4 26
|
elind |
|- ( ph -> Z e. ( U i^i Ring ) ) |
28 |
2 25 1
|
ringcbas |
|- ( ph -> ( Base ` C ) = ( U i^i Ring ) ) |
29 |
27 28
|
eleqtrrd |
|- ( ph -> Z e. ( Base ` C ) ) |
30 |
|
zringring |
|- ZZring e. Ring |
31 |
30
|
a1i |
|- ( ph -> ZZring e. Ring ) |
32 |
5 31
|
elind |
|- ( ph -> ZZring e. ( U i^i Ring ) ) |
33 |
32 28
|
eleqtrrd |
|- ( ph -> ZZring e. ( Base ` C ) ) |
34 |
24 25 9 29 33
|
cic |
|- ( ph -> ( Z ( ~=c ` C ) ZZring <-> E. f f e. ( Z ( Iso ` C ) ZZring ) ) ) |
35 |
|
n0 |
|- ( ( Z ( Iso ` C ) ZZring ) =/= (/) <-> E. f f e. ( Z ( Iso ` C ) ZZring ) ) |
36 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
37 |
25 36 24 9 29 33
|
isohom |
|- ( ph -> ( Z ( Iso ` C ) ZZring ) C_ ( Z ( Hom ` C ) ZZring ) ) |
38 |
|
ssn0 |
|- ( ( ( Z ( Iso ` C ) ZZring ) C_ ( Z ( Hom ` C ) ZZring ) /\ ( Z ( Iso ` C ) ZZring ) =/= (/) ) -> ( Z ( Hom ` C ) ZZring ) =/= (/) ) |
39 |
2 25 1 36 29 33
|
ringchom |
|- ( ph -> ( Z ( Hom ` C ) ZZring ) = ( Z RingHom ZZring ) ) |
40 |
39
|
neeq1d |
|- ( ph -> ( ( Z ( Hom ` C ) ZZring ) =/= (/) <-> ( Z RingHom ZZring ) =/= (/) ) ) |
41 |
|
zringnzr |
|- ZZring e. NzRing |
42 |
|
nrhmzr |
|- ( ( Z e. ( Ring \ NzRing ) /\ ZZring e. NzRing ) -> ( Z RingHom ZZring ) = (/) ) |
43 |
3 41 42
|
sylancl |
|- ( ph -> ( Z RingHom ZZring ) = (/) ) |
44 |
|
eqneqall |
|- ( ( Z RingHom ZZring ) = (/) -> ( ( Z RingHom ZZring ) =/= (/) -> ( ZeroO ` C ) = (/) ) ) |
45 |
43 44
|
syl |
|- ( ph -> ( ( Z RingHom ZZring ) =/= (/) -> ( ZeroO ` C ) = (/) ) ) |
46 |
40 45
|
sylbid |
|- ( ph -> ( ( Z ( Hom ` C ) ZZring ) =/= (/) -> ( ZeroO ` C ) = (/) ) ) |
47 |
38 46
|
syl5com |
|- ( ( ( Z ( Iso ` C ) ZZring ) C_ ( Z ( Hom ` C ) ZZring ) /\ ( Z ( Iso ` C ) ZZring ) =/= (/) ) -> ( ph -> ( ZeroO ` C ) = (/) ) ) |
48 |
47
|
expcom |
|- ( ( Z ( Iso ` C ) ZZring ) =/= (/) -> ( ( Z ( Iso ` C ) ZZring ) C_ ( Z ( Hom ` C ) ZZring ) -> ( ph -> ( ZeroO ` C ) = (/) ) ) ) |
49 |
48
|
com13 |
|- ( ph -> ( ( Z ( Iso ` C ) ZZring ) C_ ( Z ( Hom ` C ) ZZring ) -> ( ( Z ( Iso ` C ) ZZring ) =/= (/) -> ( ZeroO ` C ) = (/) ) ) ) |
50 |
37 49
|
mpd |
|- ( ph -> ( ( Z ( Iso ` C ) ZZring ) =/= (/) -> ( ZeroO ` C ) = (/) ) ) |
51 |
35 50
|
syl5bir |
|- ( ph -> ( E. f f e. ( Z ( Iso ` C ) ZZring ) -> ( ZeroO ` C ) = (/) ) ) |
52 |
34 51
|
sylbid |
|- ( ph -> ( Z ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) |
53 |
52
|
3ad2ant1 |
|- ( ( ph /\ Z ( ~=c ` C ) h /\ h ( ~=c ` C ) ZZring ) -> ( Z ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) |
54 |
23 53
|
mpd |
|- ( ( ph /\ Z ( ~=c ` C ) h /\ h ( ~=c ` C ) ZZring ) -> ( ZeroO ` C ) = (/) ) |
55 |
54
|
3exp |
|- ( ph -> ( Z ( ~=c ` C ) h -> ( h ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) ) |
56 |
55
|
a1dd |
|- ( ph -> ( Z ( ~=c ` C ) h -> ( h e. ( Base ` C ) -> ( h ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) ) ) |
57 |
56
|
ad2antrr |
|- ( ( ( ph /\ h e. ( TermO ` C ) ) /\ Z e. ( TermO ` C ) ) -> ( Z ( ~=c ` C ) h -> ( h e. ( Base ` C ) -> ( h ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) ) ) |
58 |
21 57
|
mpd |
|- ( ( ( ph /\ h e. ( TermO ` C ) ) /\ Z e. ( TermO ` C ) ) -> ( h e. ( Base ` C ) -> ( h ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) ) |
59 |
58
|
exp31 |
|- ( ph -> ( h e. ( TermO ` C ) -> ( Z e. ( TermO ` C ) -> ( h e. ( Base ` C ) -> ( h ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
60 |
59
|
com34 |
|- ( ph -> ( h e. ( TermO ` C ) -> ( h e. ( Base ` C ) -> ( Z e. ( TermO ` C ) -> ( h ( ~=c ` C ) ZZring -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
61 |
60
|
com25 |
|- ( ph -> ( h ( ~=c ` C ) ZZring -> ( h e. ( Base ` C ) -> ( Z e. ( TermO ` C ) -> ( h e. ( TermO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
62 |
61
|
ad2antrr |
|- ( ( ( ph /\ h e. ( InitO ` C ) ) /\ ZZring e. ( InitO ` C ) ) -> ( h ( ~=c ` C ) ZZring -> ( h e. ( Base ` C ) -> ( Z e. ( TermO ` C ) -> ( h e. ( TermO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
63 |
17 62
|
mpd |
|- ( ( ( ph /\ h e. ( InitO ` C ) ) /\ ZZring e. ( InitO ` C ) ) -> ( h e. ( Base ` C ) -> ( Z e. ( TermO ` C ) -> ( h e. ( TermO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) |
64 |
63
|
ex |
|- ( ( ph /\ h e. ( InitO ` C ) ) -> ( ZZring e. ( InitO ` C ) -> ( h e. ( Base ` C ) -> ( Z e. ( TermO ` C ) -> ( h e. ( TermO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
65 |
64
|
com25 |
|- ( ( ph /\ h e. ( InitO ` C ) ) -> ( h e. ( TermO ` C ) -> ( h e. ( Base ` C ) -> ( Z e. ( TermO ` C ) -> ( ZZring e. ( InitO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
66 |
65
|
expimpd |
|- ( ph -> ( ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) -> ( h e. ( Base ` C ) -> ( Z e. ( TermO ` C ) -> ( ZZring e. ( InitO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
67 |
66
|
com23 |
|- ( ph -> ( h e. ( Base ` C ) -> ( ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) -> ( Z e. ( TermO ` C ) -> ( ZZring e. ( InitO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) ) |
68 |
67
|
impd |
|- ( ph -> ( ( h e. ( Base ` C ) /\ ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) ) -> ( Z e. ( TermO ` C ) -> ( ZZring e. ( InitO ` C ) -> ( ZeroO ` C ) = (/) ) ) ) ) |
69 |
68
|
com24 |
|- ( ph -> ( ZZring e. ( InitO ` C ) -> ( Z e. ( TermO ` C ) -> ( ( h e. ( Base ` C ) /\ ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) ) -> ( ZeroO ` C ) = (/) ) ) ) ) |
70 |
13 69
|
mpd |
|- ( ph -> ( Z e. ( TermO ` C ) -> ( ( h e. ( Base ` C ) /\ ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) ) -> ( ZeroO ` C ) = (/) ) ) ) |
71 |
12 70
|
mpd |
|- ( ph -> ( ( h e. ( Base ` C ) /\ ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) ) -> ( ZeroO ` C ) = (/) ) ) |
72 |
71
|
adantr |
|- ( ( ph /\ h e. ( ZeroO ` C ) ) -> ( ( h e. ( Base ` C ) /\ ( h e. ( InitO ` C ) /\ h e. ( TermO ` C ) ) ) -> ( ZeroO ` C ) = (/) ) ) |
73 |
11 72
|
mpd |
|- ( ( ph /\ h e. ( ZeroO ` C ) ) -> ( ZeroO ` C ) = (/) ) |
74 |
73
|
expcom |
|- ( h e. ( ZeroO ` C ) -> ( ph -> ( ZeroO ` C ) = (/) ) ) |
75 |
74
|
exlimiv |
|- ( E. h h e. ( ZeroO ` C ) -> ( ph -> ( ZeroO ` C ) = (/) ) ) |
76 |
7 75
|
sylbi |
|- ( -. ( ZeroO ` C ) = (/) -> ( ph -> ( ZeroO ` C ) = (/) ) ) |
77 |
6 76
|
pm2.61i |
|- ( ph -> ( ZeroO ` C ) = (/) ) |